Toward a Better Coupling Scheme of Co-simulation for the 1-d Conductor Model

Dong Keun Oh (KFE - Korea institute of Fusion Energy, Daejeon, Korea) Benoît la Croix (CEA - Commissariat Energie Atomique, Cadarache, France) Quentin le Coz (CEA - Commissariat Energie Atomique, Cadarache, France)

Motivations (1/3)

 \checkmark The basic idea is "binding" independent executables.

The <u>conductor models</u> are basically critical, in particular, to describe the quench behavior.

TACTICS (*T*HE*A*-Cas*t*3M-S*i*mCryogenics) model : <u>CEA</u>

Motivations (2/3)

Day 2-1 Chats 2023 Applied Superconductivity

Chats 2019

Issue #1 : loss of implicit coupling

Session VIII-2

Interfacial problem is rather essential!

• To recover the implicit coupling, ...

Let's make it general on the plainest consideration..

: The THEA model <u>gives the boundary</u> <u>temperature</u> of the solid structure (Cast3M or Heater) model, and <u>takes</u> <u>the heat flux</u> of the boundary.

In the backward-Euler scheme..

: It looks trivial, if we take them in total!

$$\begin{bmatrix} \frac{1}{\Delta t} [\mathbf{M}_1] + [\mathbf{A}_1] & [\mathbf{C}_{12}] \\ [\mathbf{C}_{21}] & \frac{1}{\Delta t} [\mathbf{M}_2] + [\mathbf{A}_2] \end{bmatrix} \cdot \begin{bmatrix} \Delta \mathbf{T}_1 \\ \Delta \mathbf{T}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{q}_1 \\ \mathbf{q}_2 \end{bmatrix} - \begin{bmatrix} [\mathbf{A}_1] & [\mathbf{C}_{12}] \\ [\mathbf{C}_{21}] & [\mathbf{A}_2] \end{bmatrix} \begin{bmatrix} \mathbf{T}_1^n \\ \mathbf{T}_2^n \end{bmatrix}$$

Once separated, they bring a trouble ..

How to recover the lost terms

In sequence

$$\Delta \mathbf{T}_{1}^{*} = \left(\frac{1}{\Delta t}[\mathbf{M}_{1}] + [\mathbf{A}_{1}]\right)^{-1} \cdot \left(\mathbf{q}_{1} - [\mathbf{A}_{1}] \cdot \mathbf{T}_{1}^{n} - [\mathbf{C}_{12}] \cdot \mathbf{T}_{2}^{n}\right)$$

$$\Delta \mathbf{T}_{2} = \left(\frac{1}{\Delta t}[\mathbf{M}_{2}] + [\mathbf{A}_{2}] - [\mathbf{C}_{21}] \cdot [\mathbf{\bar{C}}_{12}]\right)^{-1} \cdot \left(\mathbf{q}_{2} - [\mathbf{A}_{2}] \cdot \mathbf{T}_{2}^{n} - [\mathbf{C}_{21}] \cdot [\mathbf{T}_{1}^{n} + \Delta \mathbf{T}_{1}^{*}\right)$$

$$\Delta \mathbf{T}_{1} = \left(\frac{1}{\Delta t}[\mathbf{M}_{1}] + [\mathbf{A}_{1}]\right)^{-1} \cdot \left(\mathbf{q}_{1} - [\mathbf{A}_{1}] \cdot \mathbf{T}_{1}^{n} - [\mathbf{C}_{12}] \cdot (\mathbf{T}_{2}^{n} + \Delta \mathbf{T}_{2})\right)$$
recovered solution
$$t = 5 \ (\Delta t = 0.1)$$
Without IJ
Without IJ
With IJ

The interface Jacobian makes implicit steps true!

<u>A Lesson Learned</u>

- : Conceptually, the interface Jacobian means changing rate of the boundary value with respect to the upcoming solution!
- However, the changing rate is just <u>one</u>, naturally implicated by the fixed BC for #1

 $[C_{21}]\cdot [\bar{C}_{12}]\cdot \Delta T_2$

Along the boundary, it just maps the nodal indices of #2 to the indices of #1 The FEM matrix of boundary heat flux as the integration over shape functions along the boundary $: \int_{\partial\Omega} -k \frac{\partial T^{n+1}}{\partial n} \tau \, dS \longrightarrow \sum_{ii} \left\{ \int_{\partial\Omega} -k \frac{\partial w_i}{\partial n} v_j \, dS \right\} T_{1i}T_{2j}$

So, the point is transferring the coefficients of heat flux to the THEA model to build a new component of the system matrix.

Day 2-1

For our <u>actual target</u>, i.e., of THEA-Cast3M, or THEA-Heater coupling..

$$q_{THEA} = -\oint_{\partial\Omega_{Heater}} k \frac{\partial T}{\partial n} \, dS$$

So, the coupling matrix $[C_{21}]$ can be derived from the integral over $\partial \Omega_{Heater}$ and L_{THEA} i.e. $\int_{L_{THEA}} \oint_{\partial \Omega_{Heater}} -k \frac{\partial w_i(S, x)}{\partial n} dS v_j(x) dx$.

The Actually, the interface Jacobian terms are represented simply as the rate $\Delta Q/\Delta T$, i.e., how much the heat load will vary, if the boundary temperature is changed.

So, we revise the THEA code to consider such an idea..

Let's revise the THEA code..

$$\left\{\frac{[\mathbf{M}]}{\Delta t} + \left([\mathbf{A}] + [\mathbf{G}] - [\mathbf{S}]\right)\right\} \cdot \Delta \mathbf{U} = \mathbf{Q} - \left([\mathbf{A}] + [\mathbf{G}] - [\mathbf{S}]\right) \cdot \mathbf{U}^{n}$$
$$\mathbf{Q} = \mathbf{Q}^{n} + [\mathbf{C}] \cdot \Delta \mathbf{T}_{bc} \longleftarrow [\mathbf{C}] = \begin{bmatrix} \int_{L} w_{i}^{\mathrm{T}} \left(\frac{\Delta q_{i}}{\Delta T_{j}}\right)_{\text{per BC DoF}} w_{j} \, dx \end{bmatrix}$$
$$w_{j} \, dx = \mathbf{Q}^{n} + \left[\mathbf{A}\right] + \left[\mathbf{G}\right] - \left[\mathbf{S}\right] - \left[\mathbf{C}\right] + \mathbf{C}^{\mathrm{T}} \left[\mathbf{C}\right] = \mathbf{Q}^{n} - \left([\mathbf{A}] + [\mathbf{G}] - [\mathbf{S}]\right) \cdot \mathbf{U}^{n}$$

That's it!

: The THEA code is now revised in consistent with our idea to include the IJ terms.

What about the counter parts of THEA?

: We are looking for <u>high level commands</u> to evaluate the coupling matrix (or the integral of shape functions).

	CHAP. 2.1: STATIONARY LINEAR THERMAL ANALYSIS CONVECTION AND VOLUME HEAT SOURCE	
Ma	thematical formulation	$[\mathbf{C}_{a}] \cdot [\mathbf{\bar{C}}_{a}] \cdot \mathbf{A}\mathbf{T}_{2} \longrightarrow$
* CONVE MOC MAC CO	CTION MODEL = MODE LHAUT 'THERMIQUE' 'CONVECTION' ; = MATE MOC 'H' 100. ; moductivity matrix (but for convection !)	$\int dx \int -k \frac{\partial w_i}{\partial x_i} dS$
CONH	= COND MOC MAC ; $[K] = \int_{V} [B]^{T} [\lambda] [B] dV + \int_{\partial V^{\varphi}} h[N]^{T} [N] dS$ uivalent nodal heat flux vector (convection)	$\begin{bmatrix} \mathbf{J}_L & \mathbf{J}_{\partial\Omega} & \partial n \\ \mathbf{\Delta} \mathbf{Q}_1 \end{bmatrix}$
* SECON CHTC FLH	D MEMBER FOR CONVECTION = MANU 'CHPO' LHAUT 'T' T0 ; = CONV MOC MAC CHTC ; $\{F\} = \int_{V} [N]^{T} q dV + \int_{\partial V^{\varphi}} [N]^{T} \left(\varphi_{imp} + hT_{f} + \varepsilon\sigma(T_{\infty}^{4} - T^{4})\right) dS$	ΔT_2 per BC
	PAGE 56	

http://www-cast3m.cea.fr/html/formations/Starting_with_Cast3M.pdf

Regarding the Heater code,...

: The Heater code, like all the CryoSoft codes, solves the equations with constraints (fixed boundaries), computing their residuals on the r.h.s..

Day 2-1

$$[\mathbf{F}] \begin{bmatrix} \mathbf{T}_{1}^{n+1} - \mathbf{T}_{1}^{n} \\ \mathbf{T}_{2}^{n+1} - \mathbf{T}_{2}^{n} \end{bmatrix} = \begin{bmatrix} \mathbf{Q}_{1} \\ \mathbf{Q}_{2} \end{bmatrix} - ([\mathbf{A}] + [\mathbf{G}] - [\mathbf{S}]) \begin{bmatrix} \mathbf{f} \mathbf{X} \mathbf{e} \mathbf{d} \\ \mathbf{T}_{1}^{n} \\ \mathbf{T}_{2}^{n} \end{bmatrix} = \begin{bmatrix} \mathbf{Q}_{1} \\ \mathbf{Q}_{2} \end{bmatrix} - ([\mathbf{A}] + [\mathbf{G}] - [\mathbf{S}]) \begin{bmatrix} \mathbf{I} \\ \mathbf{T}_{1}^{n} \\ \mathbf{T}_{2}^{n} \end{bmatrix} = \begin{bmatrix} \mathbf{1} \\ \mathbf{2} \end{bmatrix} : \text{ boundary}$$
constraint (fixed)
$$\mathbf{residual} \text{ (to be solved)} \quad \text{Where } [\mathbf{F}] = \frac{[\mathbf{M}]}{\Delta t} + ([\mathbf{A}] + [\mathbf{G}] - [\mathbf{S}])$$

We are better to change the solution scheme for correct evaluation of the IJ terms.

Let's revise the Heater code..

: Then, the IJ terms are obtained as the variation along with the boundary temperatures.

- That means we need to solve the matrix again to obtain the IJ terms of $\frac{\Delta Q}{\Delta T}$, which looks costful; any cheaper approximation?
- The Heater code is <u>updated to evaluate the additional terms of IJ</u> which will be transferred to the THEA code to compose the [C]-matrix

Verification (1/4)

: Let's consider a co-current SUS304 heat exchanger, initially at 10K, with two helium channels (1m) of rectangular flow area (1cm x 1cm)..

hydraulic flows

outlet temperature

time = 0.3 sec.

Verification (2/4)

: Then, let's change the inlet temperature of the channel 1 up to 25K and more around 2.5 sec.

hydraulic flows

Verification (3/4)

: What about the stability? \Rightarrow <u>CPU time can be an indicator</u>.

T_{peak}	Original	Modified (CPU time in sec.)		
(K)	(CPU time in sec.)	Without IJ	With IJ	
50	13.6 (H1)	10.2 (H1)	10.5 (H1)	
	0.59 (T1)	0.57 (T1)	0.57 (T1)	
	0.61 (T2)	0.59 (T2)	0.62 (T2)	
75	16.7 (H1)	10.5 (H1)	10.5 (H1)	
	0.61 (T1)	0.56 (T1)	0.56 (T1)	
	0.60 (T2)	0.59 (T2)	0.61 (T2)	
100	17.9 (H1)	10.3 (H1)	10.4 (H1)	
	1.17 (T1)	0.63 (T1)	0.57 (T1)	
	0.60 (T2)	0.57 (T2)	0.60 (T2)	
125	broken solution (at ~60% eval.)	11.8 (H1) 1.40 (T1) 0.60 (T2)	10.5 (H1) 0.65 (T1) 0.59 (T2)	

Verification (4/4)

: Let's look into the case of inlet temperature 125 K.

Improved, but..

The hydraulic terminals seem to be the source of instability!

Conclusion

- A better coupling scheme for integrated modeling is introduced on the lesson learned from the plainest case of thermal contact.
- The issue of THEA-Cast3M models in quench is to be understood by pointing out the source of trouble on our attempt of new coupling scheme.

Supplements

How to relax the hydraulic boundaries

An application of the decomposed flux boundary (Eq 4 and Eq 5) in the reference, *i.e.*, D. K. Oh and S. Oh, "Improved 1-d hydraulic network model for cryogenic circuits coupled to CICC models of fusion magnet systems" *Cryogenics* 97 (2019) 133-143

Actually, there is a trick.

$$[\mathbf{IJ}] = [\mathbf{C}_{21}] \cdot \left(\frac{1}{\Delta t}[\mathbf{M}_1] + [\mathbf{A}_1]\right)^{-1} \cdot [\mathbf{C}_{12}] \quad \begin{array}{l} \text{At a glance, matrix inversion} \\ \text{seems not avoidable!} \end{array}$$

Nonetheless, don't forget the artificial elements (TGV) assigned to be LARGE enough, typically, as 10³⁰ to impose the static constraint of temperature boundary condition.

Let
$$[\bar{\mathbf{C}}_{12}] = 10^{-30} \times [\mathbf{C}_{12}] \Rightarrow \left(\frac{1}{\Delta t}[\mathbf{M}_1] + [\mathbf{A}_1]\right) \cdot [\bar{\mathbf{C}}_{12}] \approx [\mathbf{C}_{12}]$$

This means $[\bar{C}_{12}]$ has the same structure with elements of 1 instead of 10^{30} !

 $\bullet [\mathbf{IJ}] \approx [\mathbf{C}_{21}] \cdot [\bar{\mathbf{C}}_{12}]$

Ex)

Solution scheme.. What? (1/2)

Let's check the simple 1-d Heater model of a metal wire:

- A SUS304 wire of 0.2m (area = 1.0 cm²)
- 50 elements (51 node)
- Initial temperature : 6 K
- Boundary temperature: Adiabatic (left end), 4.2 to 6 K (right end)

Solution scheme.. What? (2/2)

The original routine looks counting another amount of heat load to change the nodal temperature itself, which may bring an incorrect result <u>deviated from the net heat flow</u> out of the boundary.