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Nb,Sn accelerator magnets

On the search for higher magnetic fields in accelerator magnets

Presently, Nb,Sn superconductors are the preferred solution for the windings of
high-field accelerator magnets:

-  Performance above Nb-T1i limits.

- Proven large-scale industrial production.

State-of-the-art Nb,Sn wires surpass the values of J. > 1000 A/mm? (SC area) at 16 T
and 4.2 K.

However, these appealing properties are impaired by: N2 Foatherford cable. Souros: (CERN]

The strain sensitivity and brittle nature of the superconductor.

The determination of sound electro-mechanical limits for Nb.Sn technology becomes of paramount importance!

High-field accelerator units

o

Magnets are intrinsically characterized by the large electro-magnetic forces arising from the combination of the required high
current densities, J, and produced magnetic fields, B.
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A bit of history and motivation for our work

During the past years, our community has tried to shed some ligcht on the electro-mechanical properties of Nb§@
superconductors.

- Developing the necessary mathematical background to describe the

- To establish safe strain/stress limits for operation. strain effects on the superconducting properties.

Laboratory-scale experiments Direct assessment on magnet configuration

Exploring the electro-mechanical response of single
wires, up to full cables, when subjected to

redhemical loeds, Magnet performance studied as a function of

different conductor stress levels.

- Back in the 1980’s by Ekin and co-workers

[1] - [2] - Lawrence Berkeley National Lab. (LBNL)
- University of Geneva TQ magnet

[3] - [11] [25]
- CERN

[12] - [16]
- University of Twente - CERN

[17] — [18] SMC magnet
- NHMFL (26 - 27]

[19] = [21] MQXF magnet

= Fermilab
[22] — [24] [28]
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Overview on Nb,;Sn

= Strain sensitive and brittle superconductor

Change in the phonon

Strain Deformation of the spectrum and the | Change in superconducting
crystal structure slectronie bemds properties (T, and B_,),
5 and thus, critical current!
? sn '\»j)bo 4 °iVoT°
o:’ °" .g a4 % JJ 9
ay"’,'}‘ .,—5":4:
2 '/0 ‘° g -3 & O‘O
@ ¢ W o s )

G. De Marzi et al. arXiv:1210.3705, 2012.

Reduction in conductor

Brittle fracture of the Reduction of the
superconducting phase current-carrying ———p  performance / critical
surface current!

A. Moros et al., IEE TAS 2023
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Overview on Nb,;Sn

Critical surface — Exponential scaling law proposed by Bordini, Bottura et al. [29] — [30]

Initially postulated to predict the effects of mechanical strain in axially lo rain region!

_ Transversally ransversally loaded cable stacks (macro-scale model)

" 2D and 3D detailed : [34] — [35] G. Vallone et al.
[31]-[32] Bordini, Cat posss
[5] Senatore, Bagni, Calzolaio et al.
[33] Chiesa, Wang et al.

It can be applied to a 2D magnet cross-section

(already published).

[

Cattabiani, Baffari et al. Vallone, Ferracin, Bordini et al.
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Methodology

* Domain homogenized down to an octagonal strand representation (Cu, Nb,Sn).

= 2D static structural analysis. Material properties from literature. Described in
details in [34] — [35].

®* Boundary conditions play a critical role. Plane stress used in the simulations O - strand-filament
shown in these slides. l

amplification factor

Epoxy

= The strand critical current is computed averaging the critical current over the
strand area (perfect current redistribution within the strand).

= The horizontal and vertical strain in the Nb;Sn area are amplified with a
constant factor: Nb,Sn

& D ag;

Amplification when scaling the model to the filament level (strand-to-filament
amplification factor).

= Furthermore, the approach considers the effect of the thermal contraction
mismatch on strand constituents (from the reaction to cryogenic
temperatures). This “pre-compression strain tensor” is added to the one
computed by the mechanical model:

o
€77 = € 24 +£lO
o
Exx = Exx — V&

—

Vallone, Ferracin, Bordini et al.
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Methodology

= The following fitting parameters are needed to feed the scaling law:
* Non-strain related: C,, B, (0,0), T, (0)
® Strain related: Cy, &,

Requirement: Characterization of the desired strand using a standard
WASP measurement.

= Recall: This approach is valid when the mechanism governing the Ic
change is a modification on the strain state of the superconducting
phase:

»  Flastic (recovered when the load is removed)

* Plastic (mainly coming from matrix plasticization)

= A failure criteria is needed (separately) to deal with the brittle fracture
of the NbsSn phase.

= Proposal from Vallone et al. in
https://indico.cern.ch/event/1177999/

®= Indications of clear differences depending on the test
configuration (4-wall fully supported strand, 2-wall)

= Not covered in these slides!
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Ic vs. transverse stress on single wires

t

/Z5 UNIVERSITE
42/ DE GENEVE

Example on measurement results

Fixed top part I I
: 1.0 LITT T _
: I I 95% 1,
I ! Wire in the i
| ] b 0.8 T
X groove :
h [4-wall -
! constraint] ~ -
— 06 .
00 ©
0.4} .
—8—#31712-1 O unload 1
I @4.2K,19T |
1 0.2....I....I....I....I....I....I....
&/ L 0 5 10 15 20 25 30 35
Z : Transverse force [kN]
- Applled L P | - 1 P P | - 1 P P | - P
0 30 60 90 120 150 180 210 240
Movable bottom part Force Transverse stress [MPa]
To compare results among wires, a conventional
C-WASP — I, vs transverse stress irreversible threshold is generally defined as the stress
measurements level leading to a permanent 5% loss of Ic.
Trying to reproduce the operating conditions Plot shows results at 19 T.
of accelerator magnets.
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. . UNNERSWE Fitting parameters
Ic vs. transverse stress on single wires DEGENEVE _ . = o

axial strain
measurements.

Amplification factor assessment:

Ogrp = 1.2

v

140 140 ———
120 | 120 ]
100 | 100 | ]
= 80 | = 80 | ]
~ 60 ~ 60| ]
40 | 40 | ]
I Rolled - Sample 1 I Rolled - Sample 1 ]
20 | |—=—Rolled - Sample 2 ! 20 |- |—=—Rolled - Sample 2 ]
- | ——FEM - Load 19T i [——FEM - Load 1.15 mm width groove||
oL 0 e s —
0 50 100 150 200 250 0 50 100 150 200 250
Stress [MPa] Stress [MPa]

0.85 mm RRP 108/127 15% rolled (HL-LHC MQXF quadrupole)
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[
. . | UNNERSWE Fitting parameters
Ic vs. transverse stress on single wires DE GENEVE o 2 vod from Ic v
axial strain
Simulation and experimental results: measurements.
0.85 mm RRP 108/127 15% rolled 1 mm PIT 192 15% rolled
(HL-LHC MQXF quadrupole) (FRESCAZ2 dipole)
140 T I T T T T T T
I | Strand model, ogrp = 1.2 | ] | Strand model, op = 1.4 [34] |
120}

] 150 Unloageq

100 |

< 1 < 100 ¢
~ 601 i ~
19T
40 | ] 50 | 1
I Rolled - Sample 1 ] Rolled - Sample 1
20 - |—=—Rolled - Sample 2 ] Rolled - Sample 2 |
| |——FEM - Load 1.15 mm width groove | —FEM - Load 1.15 mm width groovel| |
OO 50 100 150 200 250 00 50 100 150 200 250
Stress [MPa] Stress [MPa]

= Model catches the Ic reduction when the transverse load is applied for both wire technologies.

Oprr = 1.4, consistent with cable model [34] — calculated by direct fitting of experimental data. Larger strain sensitivity than RRP (core, etc [32]).

= Simulation results after force unload are inferred using the experimental data. Model is not predictive, but it can still provide I
when coupled to a C-WASP measurement (additional slides). Development on-going.

c unload
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UNIVERSITE  Fitting parameters
DE GENEVE extracted from Ic vs

axial strain
measurements.

Ic vs. transverse stress on single wires

Simulation and experimental results:

0.85 mm RRP 108/127 15% rolled
(HL-LHC MQXF quadrupole)
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Wrap up on tests on single wires

Important information for magnet application:

- As already shown by previously published models, the exponential scaling
law is able to correctly describe the reduction in Ic due to applied
transverse stresses as high as 200 MPa.

Indication that the dominating mechanism is the strain effect on B_, and T,

For this test configuration (4-wall)!

- Independent confirmation on three different wire types has been recently
published by Senatore et al. [11] - detailed analysis of the experimental
B.,(g) evolution.

RRP up to ~ 2560 MPa (anvil applied normal stress)
PIT up to ~ 200 MPa (anvil applied normal stress)

- Post-mortem inspection of C-WABSP test samples revealed the absence of
transversal cracks sectioning the Nb,Sn filaments [8] — [10].

- Finally, consistent results found on PIT cable tests, where the onset of
cracks was identified at around 180 — 200 MPa [12] — [14].

Bladder and key set-up.

The behavior can be successfully

& reproduced using the scaling law (already
shown by previous studies). This time, also

with a simplified strand representation!
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Electro-mechanical limits on magnet configuration

HL-LHC MQXF project:
One short model magnets is being used to explore the electro-mechanical limits of
the conductor in magnet configuration.

e MQXFS7 — 2 coils with PIT and 2 coils RRP conductor.

- Magnet pre-load gradually increased searching for signs of performance
reduction. Similar test as the one reported by H. Felice et al. [25].

- Pre-load level at cold estimated using mechanical instrumentation placed on the
winding pole (representative of stress in inner radius pole turn conductor,
standard FE model).

Instrumentation on the winding pole
(indirect assessment of coil stress)

Coil pre-load / pre-compression further
increased at cryogenic temperature
thanks to the larger thermal
contraction of the outer Al-cylinder.

Coil pre-load / pre-compression
applied by a system of interference
keys.

energization.
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Electro-mechanical limits on magnet configuration

Magnetic field at I T

nom
Results on MQXESY experiment so-far: : : —— : 11
0055 | s ]
- Critical current characterization on extracted strands for 5 Mﬁ,ﬁ;;q;{-‘f;f“ 10
each coil. Coil 211 (PIT) being the limiting coil according to 0-05 e TR e ]

these measurements.
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Electro-mechanical limits on magnet configuration

Simulation set-up:

- MQXEFES7 experiment modelled using our proposed methodology. Model
validated mechanically in [35]. Recall: material properties from literature.

- Strain related fitting parameters (including expected Ic decrease due to
permanent strain effects): extracted from available measurements at UNIGE,
1 mm PIT192 strand (not exactly the same). Non-strain related: coil extracted
strands.

- For each assembly iteration, the pre-load is adjusted to match the experimental
results (we match the indirect measurements at the winding pole).

- Quench current defined as the point where the critical surface is crossed.
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Electro-mechanical limits on magnet configuration

Results:

Reference pre-load (4.5 K /110 MPa)

Strain function at I;]uench
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Following the magnet design, the peak field region during powering is found in the pole turn block, which unloads under the action of
the electro-magnetic forces. Peak field and highest stress area during powering disentangled!

B

At I — B

nominal p mid-plane (high stress) ~ B
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Electro-mechanical limits on magnet configuration

Results:

200 MPa pre-load (4.5 K)
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In this particular case for MQXF (4.5 K and strand characteristics), when the magnet is “pre-loaded to the extreme” (200
MPa), a reduction of the short sample limit still appears in the pole turn block due to permanent effects originated by large
stresses after cool-down. We do not “jump” to the high stress region (lower field).
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Electro-mechanical limits on magnet configuration

Results:

- The magnet strand model (fed with the data from transverse
compressive strand tests) shows a similar tendency than the (so-far)

measured reduction in quench current. Measured and computed reduction in
- Note that our input data is not strictly the one for the MQXFS7 quench current.
strand. 105%
-  Experimental and simulated reduction in the same order of
magnitude (< 5 %). 100%
- Disregarding the absolute value of Iquench/ I, = Quench happens in 95% s
the peak field pole turn conductor, which is unloaded during 2 _ , Limit of
. . S All quenches in coil 211 — pole turn EEe—
magnet ramping. Same result predicted by the model. = application
90% _
- The small short sample reduction with increasing magnet pre-load
in this case is thus due to permanent effects arising from the large —B—Exp.
; : 85% 45K
stress levels at cold in that region. FEM PIT
- From conductor tests: reduction in Ic under “unloaded conditions”
is significantly smaller than in the loaded regime — decrease in 80%
quench current contained within 5 % even at high pre-load levels. 90 110 130 150 170 190 210

Estimated pre-load at cold [MPa]
- Note that in the real system, geometrical tolerances/imperfections,
can modify the conductor strain state. These cases can be simulated
as well, but presented results correspond to a perfect geometry.
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Outline

= Comparison

3D rendered view of a MQXF short model magnet, whose analysis is treated in the
slides.
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Correlation between strand and magnet results

Correlation between both experiments:

- Methodology allows to compute the magnet limiting current thanks to the inclusion of strain effects on the conductor
critical surface (assuming no cracks on the Nb,Sn region).

Let’s focus on the simulated case at 200 MPa (in the limit of validity, based on our current conductor understanding)

Note that: Load line margin is usually 1/3 of the corresponding critical surface one.

- No C-WARBSP tests are available for the 0.85 mm MQXF PIT strand, but this particular case can be simulated.

Cable current (kA)

23 -

22

21 A

20 A

19

18 ~

17

16 -

15 4

14

13

==-=[0ad-line

3. Coil 211, 45 K

—FEM - Pole turn / Pre-load = 110 MPa
—FEM - Pole turn / Pre-load = 200 MPa

5 o
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/ '.'EI thankS to
3% numerical
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Outline

" Conclusions

3D rendered view of a MQXF short model magnet, whose analysis is treated in the
slides.
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Conclusions

- The accurate reproduction of the strain effects in the Nb,Sn critical surface (pure strain effects, no cracks) is today a well-known
domain of study. A three-dimensional mathematical description is available in the form of the exponential scaling law.

- The latter has been successfully applied to detailed 2D and 3D FE models, matching experimental data at the conductor level.

- Meaningful results at the conductor scale (cable and strand/wire) can be obtained as well with a simplified geometry of the
domain. This reduces significantly the computational cost and allows the application of the scaling law at the magnet scale.

- Amplification factor needed to go from the strand to the filament level. This factor has been obtained by combining detailed and
simplified geometry models. Consistent results with the one obtained by direct fitting of experimental data.

- Under certain support / boundary conditions Nb,Sn conductors can withstand large stress levels (up to / above 200 MPa), in the
absence of cracks sectioning the superconductor. Proven experimentally (B_, evolution, post-mortem inspection) and numerically
in wire and cable configuration.

- In such a regime, the strain sensitivity is strongly magnetic field dependent. It is crucial to consider this dependency for the correct
interpretation of test results.

- The direct application of the strand model to the magnet allows to include the strain effects modifying the short sample limit
(again, no cracks regime). Good agreement between the obtained simulation results and recent experiment in MQXFS7.
- Small loss (< 5 %) in magnet quench current even up to high pre-load levels (170 MPa measured in the winding pole).
- Quench location corresponds to the pole turn block (peak field, low stress during magnet ramping). Caught by the model.

- Since results are caught by the scaling law (up to this level) — indirect indication that the magnet support conditions are coherent with
the conductor tests (C-WASP, FRESCA sample holder). More work on-going to substantiate/support this statement!

- The methodology provides important information to magnet designers. Always interesting to disentangle the peak field and high
stress regions. Strand model provides the essential information on where the magnet is limited (peak field-low stress vs. lower
field-high stress).

- From conductor tests, the loss in Ic is significantly smaller when the sample is unloaded (permanent effects: copper plasticization).
- Design / assembly parameters can be optimized to stay as much as possible in this domain.
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Thank you very much for your attention!

Special thanks (and credits!)
to everybody involved:

Susana lzquierdo
Giorgio Vallone
Bernardo Bordini
Tommaso Bagni
Carmine Senatore
Paolo Ferracin
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The scaling law

Important to recognize the three-dimensional nature of the scaling law.

It has been proven that for (1) the scaling law can be used under more complex loading conditions.

Focus on transverse loads, those usually of largest magnitude on accelerator magnets

Studies employ Finite Element models to extract the strain tensor. Validated in:

- Transversally loaded wires (micro-scale models) - Transversally loaded cable stacks (macro-scale model)

= 2D and 3D models computing I, [34] — [35] G. Vallone et al.

= Detailed sub-element geometry
[31]-[32] Bordini, Cattabiani, Baffari et al.
[5] Senatore, Bagni, Calzolaio et al.
[33] Chiesa, Wang et al.

It can be applied to a 2D magnet cross-section (already
published).

R
L
LR
6O

Cattabiani, Baffari et al. PIT 2013 - Sample Holder - Critical Current

—Model - 90 MPa

1.1

1.0 @ O O R °°°° —Model - 103 MPa

0.9 _ (XX o K o) 36 — Model - 134 MPa

. —Model - 155 MPa

08 - X+ _32 o Meas. - 90 MPa
So07 SO =49 o Meas. - 103 MPa
2% &% =] o Meas. - 134 MPa
g 0.6 S w0 204 ¢ Meas. - 155 MPa
205 - o0 5 |

0.4 20 -

0.3 £ =-clamped <] 16

0o £ 4 experimental data )

0. F————————— = 2, 8 9 10 11 12

0 50 100 150 200 Peak Field [1]
Load [MPa]
Cattabiani, Baffari et al. Bagni, Calzolaio et al. Vallone, Ferracin, Bordini et al.
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Electro-mechanical limits on magnet configuration

A quick analogy, why is this important?

Example! C-WASP measurement for
0.85 mm RRP 108/127 15% rolled

140 . .
120 : Current ramp ]
100} i SN

I -

— 80F ]

=

~ 60 _ After cool—-

I T down to
40 I Rolled - Sample 1 cryogenic
[ |—=—Rolled - Sample 2 temp.
20 f |——FEM - Load ]
L —FEM - Unload
0 n s L 1 L L n ' 1 L n n n 1 s n L L 1 n n L n
0 o0 100 150 200 250
Stress [MPa]

Jose Ferradas Troitino C\E/R—Nwl

1.15 mm width groove

For the simulated magnet case - 4.5 K

In our peak field region, we follow the unload curve, whose slope
is significantly lower than the load one!

This is an interesting feature of a magnet design, allowing to
contain the decrease in quench current under reasonable limits
for high stress levels (without decreasing the overall current
density).
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Correlation between strand and magnet results

* In the domain of application for the scaling law (no cracks), the conductor results could be correlated with the magnet
ones when:

1) The field dependence is considered

2) The test configuration is such that is representative of the magnet one:

% Strand / insulation / groove ratios consistent with the final cable ones
Defines the fraction of force reaching the strand in the C-WASP experiment.

% Support conditions are adequate (4-wall configuration, strain conditions)

Essential to consider all these factors in order to obtain meaningful information from strand / cable tests !

Magnet strand model:

C-WASP strand model:

Location of the quenching strand S/ & ot Correlation between
rain / stress state
Strain / stress state - > both results.
Support conditions Conductor data to
Support conditions Consistent?

magnet application!
Domain of

application of
the scaling law?

The “measurable” (experimentally) is the The “measurable” (experimentally) is
transverse pre-load value. the normal applied stress value.
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. . | UNNERSWE Fitting parameters
Ic vs. transverse stress on single wires DEGENEVE _ . = o

axial strain
measurements.

Simulation and experimental results:

0.85 mm RRP 108/127 15% rolled 1 mm PIT 192 15% rolled
(HL-LHC MQXF quadrupole) (FRESCAZ2 dipole)
140 [ L ] L A O L B
120 L 150 g5 =2 08 o i
100 ~<g ~2
— 80| _ ~
= = 100
~ 60L ~
[ 19T 19T
401 Rolled - Sample 1 50 Rolled - Sample 1 |
| |—=—Rolled - Sample 2 ] Rolled - Sample 2
20 [ |——FEM - Load ) | |——TFEM - Load
i —FEM - Unload 1 | |— —=—=FEM - Unload
O 1 n L n 1 i n s n 1 n L n n 1 n L n L 1 n ' n L 0 L n ' n 1 n L n L 1 n ' n L 1 n L n 1 1 s n L n
0 50 100 150 200 250 0 50 100 150 200 250
Stress [MPa)] Stress [MPa)
1.15 mm width groove 1.15 mm width groove
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. . ' UNWERSHE Fitting parameters
Ic vs. transverse stress on single wires ) DEGENEVE .~ =3¢ 1

axial strain
measurements.

Simulation and experimental results:

0.85 mm RRP 108/127 15% rolled
(HL-LHC MQXF quadrupole)

350 ————
300 ot .
250 | Tl T 3
S S S
i 200 — . \.\\ -------- ﬁ
~150f 7T T TTTSSII I s g O
5 18 T - Load T~ e A, . O
- 18 T - Unload ~o AT
100 _ A 17T - Load h S A
| A 17 T - Unload S -
50| e 16T - Load ¢
| o 16 T - Unload —— FEM
O I T S S S
0 50 100 150 200 250

Stress [MPa]
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Permanent effect based on experimental data

Under the assumption of no cracks, we can use our Tc0, Bc20, CO obtained from the axial test and map a “experimental” strain
function from the measurements at 19 T

150
0.95
19T
0.9
Unload Assuming Tc0, Bc20, CO from 0.85
100 1 axial WASP '
_ —
= Y o0s
~ Load Bl 0.75
50 L i Optimization algorithm ——Step
0.7 —{J—Backstep
0.65 —— Poly. (Backstep)
Rolled sample, zero applied axial strain
0 1 L 1 1 0-6
0 50 100 150 200 250 0 50 100 150 200 250 300 350
Stress [MPa] Stress [MPa]
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Permanent effect based on experimental data

Knowing the strain function (from measurements at 197T) and using the fitting parameters from the axial WASP we can
compute Ic at any field, or Bc2 at any stress.

25.5 350
300
[ J\.\
250 [ |
E |
< __, 200 ‘-\I\.
® <
——Bc2 Load o [ |
22> = 150 -I\.\.
——Bc2 Unload
22
<+ Bkr Load 100 .—.—H—.—H——._.\.\.
21.5
O Bkr Unload
21 B Ic Unload Exp IcUnload 19T
0 50 100 150 200 250 50 IcUnload 18 T IcUnload 17T
Stress [MPa] IcUnload 16 T
0
0 50 100 150 200 250
Stress [MPa]
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Permanent effect based on experimental data

Knowing the strain function (from measurements at 197T) and using the fitting parameters from the axial WASP we can
compute Ic at any field, or Bc2 at any stress.

1 1
y =-0.8835x2 + 1.7566x + 0.0758
0.95 9 0.95 R?=0.9997
0.9 \ 0.9
0.85 - 0.85
— ‘_g
a’. 0.8 —0—FEM S o0s
w
—{ll— Ste —
0.75 P » 075
—{—Backstep
0.7 0.7
—— Poly. (FEM) :
0.65 —ll— Step to backstep
Poly. (Backstep) 0.65 —— Poly. (Step to backstep)
0.6 0.6
0 50 100 150 200 250 300 350 )
0 0.2 0.4 0.6 0.8 1
Stress [MPa]
S(E)Ioad
Furthermore, we know that our FEM matches well the part under
load. To infer the Ic after unload, a simplistic approach could be
to use the experimental strain function plot to determine s(e) for Thus, we can set our transfer function
the unloaded sample. between s(€)°2d and s(g)urload hased on

Note.- If our model would catch better the residual strain, this
would not be needed.

UNIGE measurements.
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Electro-mechanical limits on magnet configuration

%107 Avg. azimuthal stress
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-297.2
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-297.6

0.85 mm RRP 108/127 15% rolled (HL-LHC MQXF quadrupole)

-297.8

-298

1.15 mm width groove

-298.2

Avg. azimuthal stress

0.98 mm width groove
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120 120 | ol R
100 = 100 | i
— 80} | ]
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| |= — —~FEM - Unload | |- ==-FEM - Unload ]
O L R U RS S S TS S RS T O [ R T S S R
0 50 100 150 200 250 0 50 100 150 200 250

Stress [MPa) Stress [MPa]

Setting the pressure, the total force in the system is larger for larger grooves (larger total force).
For the same groove and pressure (same total force), the force reaching the strand is larger for larger diameters.

Force fraction between UNIGE tests varies within 10%. See [5].
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Magnet strand model

5 MQXFS4
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Shell Azim. Stress [M Pal

Vallone et al.
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Correlation between strand and magnet results

- Average normal stress in the Nb,Sn region (magnet model) after cool-down to cryogenic temperature.
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Electro-mechanical limits on magnet configuration

Magnet stress state:

Reference pre-load (4.5 K - Nb,Sn region)
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Azimuthal, radial and axial directions ~ principal.
Dominated by the azimuthal component.
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Permanent effect based on experimental data.

J«(B,e) = C" (f(g))p_l [1_ (%)r

This is valid when the Ic reduction is governed by the lattice deformation (strain, no cracks) and far from Tc.

Since in our experiment at UNIGE we have found that no cracks are present in the wires (by inspection and by consistency in Bc2 decrease), we
can use the expression above.

Fixed temperature simplification:

= Bc2(e) is obtained by Kramer extrapolation* from the different field sweeps.

* One can then compute Ic at any magnetic field and any strain, if we know Bc2(g).

* The same applies when the load is removed, there the permanent effect comes from Bc2unload(g).

»  Using the expression we can get the permanent reduction by using: Ic®°2d(g)/ IcO [as a function of Bc2wead(g) and Bc2uwnlead(0)]

*  Very interestingly for us, we can also get the ratio Ic®°ad(g)/ Icl*2d(g). In this case as a function of Bc2umlead(g)/Bc2load(g).

With p=0.5 and gq=2:

Ié,LTlload B | Bégad(o_) r/z lBanload(O.) _Br
BE% () B3 (0) — B

Eoad(p,g) [ Bep(0) | [BYe*(0) - B]'
leo (B,o=0)  |BYM° (o) B.;(0) — B

C. Seagal et al. , “Evidence of Kramer extrapolation inaccuracy for predicting high
o - field Nb;Sn properties”
3*¢ May 2023 doi:10.1088/1742-6696/1559/1/012062
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Permanent effect based on experimental data.

Results

Measured Ic and computed using Bc2(g) after force unload agrees well.
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