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1.Motivation

SMC – Short Model Coil

[1] R. Ortwein. Review of the state of the art, SMC (Short Model Coil). CERN EDMS 1836763 

v.1 http://edms.cern.ch/ui/file/1836763/1/Review_SMC_Final_OrtweinR.pdf

520 mm

500 mm
Numb

er
Name Number of 

DP
Conductor 

type
Resin type

1 SMC#1 2 IT Mix71A
2 SMC#2 2 PIT Not impregnated
3 SMC#3a 2 PIT Mix71A
4 SMC#3b 2 PIT Mix71A
5 SMC#4 2 PIT CTD-101K
6 SMC#5 2 RRP CTD-101K
7 SMC11T#1 1 RRP Mix71A
8 SMC11T#2 1 RRP CTD-101K
9 SMC11T#3 1 RRP CTD-101K

10 SMC11T#4_1 1 PIT CTD-101K
11 SMC11T#4_2 1 PIT CTD-101K

Summary of the work done during the years 2008-2017
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z



2. The principle of bladders & keys

Deformation after pre-
stress (20x magnified) 4



3. SMC magnet instrumentation

[1] 5

T – circumferential (azimuthal) direction



4. General load cycle

Load step [-]

Time [s]

1 2 3 4 5 6 7 8

2nd load 

cycle

T [K]

293

1.9-4.2

Strain

PR 1

PR 2

1: pre-load 

2: cool-down 

3: powering 

4: warm-up
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5. Strain measurements (1/9)

1με=1e-6 [-] = 0.0001 %

2000με=2e-3 [-] = 0.2 % SMC11T#3

Strain drop

7

Each load cycle divided into 8 steps: 

1 – start of the horizontal pre-load, 

2 – end of the horizontal pre-load, 

3 – start of the longitudinal pre-load, 

4 – end of the longitudinal pre-load, 

5 – cooldown start, 

6 – cooldown end, 

7 – warm-up start (end of powering), 

8 – warm-up end
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5. Strain measurements (2/9)

με

SMC11T#3

1με=1e-6 [-] = 0.0001 %

2000με=2e-3 [-] = 0.2 %

Asymmetry in the gauges 2 
and 5 very large!
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5. Strain measurements (3/9)

𝜀𝑑 = 𝜀𝑐𝑑𝑠 − 𝜀𝑤

𝜀𝑑𝑝 =
𝜀𝑑
𝜀𝑐𝑑𝑠
100%

𝜀𝑐𝑑𝑠 is the strain before cool-down 

𝜀𝑤 is the strain after warm-up

𝜀𝑑𝑝 is the percent strain drop

9

SMC11T#3



5. Strain measurements (4/9)
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5. Strain measurements (5/9)
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5. Strain measurements (6/9)
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1.8-49.8 % 

average 27.6 %. 
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5. Strain measurements (7/9)

A. Chiuchiolo et al. Strain Measurements With Fiber Bragg Grating Sensors in the 

Short Models of the HiLumi LHC Low-Beta Quadrupole Magnet MQXF, IEEE Trans. 

Appl. Supercond. 28:4 (2018) 4007805

strain drop of 9-18 %

J.C. Perez et al. Construction and Test of the Enhanced Racetrack Model Coil, 

First CERN R&D Magnet for the FCC, IEEE Trans. Appl. Supercond. 32:6 

(2022) 4005105

34-56 % (midplane strain gauges)

52-61 % (the rest of the gauges)

From the data in the paper
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5. Strain measurements (8/9)
SMC#3b after powering

SMC11T#1 after powering

SMC11T#3 after powering

14
[1] R. Ortwein. Review of the state of the art, SMC (Short Model Coil). CERN EDMS 1836763 

v.1 http://edms.cern.ch/ui/file/1836763/1/Review_SMC_Final_OrtweinR.pdf

SMC11T#2

after impregnation

SMC11T#2

after powering
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6. Viscoelastic materials (1/4)

SOLID
(elasticity)

FLUID
(viscosity)

+ = VISCOELASTIC 
MATERIAL

G G1 G2
GnG

1 2
nG



Mechanical properties of viscoelastic materials evolve with time!
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6. Viscoelastic materials (1/4)

SOLID
(elasticity)

FLUID
(viscosity)
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MATERIAL

G G1 G2
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Mechanical properties of viscoelastic materials evolve with time!
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6. Viscoelastic materials (3/4)

Are there viscoelastic materials inside the SMC magnet?
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6. Viscoelastic materials (3/4)

Are there viscoelastic materials inside the SMC magnet? YES
G10/G11 – high-pressure fiberglass laminate

Kapton

Epoxy resin

Copper

Z. Zhang, G. Hartwig. Low-temperature viscoelastic behavior of unidirectional carbon composites, Cryogenics 38:4 (1998) 401-405

J. V. Gauchel, J. L. Olinger, D. C. Lupton: Characterization of Glass-Reinforced Composites for Cryogenic Applications. In: Adv. 

Cryog. Eng., Vol. 28, pp. 211-222. New York, Plenum Press (1982).

S.S. Wang et al. Tensile and Torsional Fatigue of Fiber-Reinforced Composites at Cryogenic Temperatures, J. Eng. Mater. Technol.

104:2 (1982) 121-127

S.S. Wang, E.SM. Chim. Degradation of fiber-reinforced composite materials at cryogenic temperatures, part I - uniaxial tensile and 

pure torsional fatigue. In: Reed, R.P., Clark, A.F. (eds) Advances in Cryogenic Engineering Materials . Advances in Cryogenic 

Engineering Materials , vol 28. Springer, Boston, MA

C. Ferrero, C. Marinari and E. Martino. Calibration systems for strain gauges to be used at cryogenic temperatures, Sensors and Actuators A, 

31:1-3 (1992) 125-129

M. Wang et al. Rheological and mechanical properties of epoxy/clay nanocomposites with enhanced tensile and fracture toughnesses, 

Polymer 58 (2015) 43-52

R.P. Reed, N.J. Simon, R.P. Waish. Creep of copper: 4-300 K. Materials Science and Engineering, A 147:1 (1991) 23- 32
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6. Viscoelastic materials (4/4)

Continuum damage mechanics (CDM) Viscoelasticity

𝑭

𝒖

𝑭 = 𝑲(𝑡)𝒖

𝑲 𝟏

𝑲 𝟐

• Stiffness evolves as function of the load
• Large number of iterations required
• Large computational cost

𝒖

𝑡

𝑭 = 𝑲(𝒖)𝒖

• Stiffness is known function of time
• Much lower computational cost compared to CDM
• If loads is a function of time we can relate the stiffness 

evolution to the load evolution as in CDM

𝑭 = 𝑲(𝒖)𝒖
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7. Viscoelastic materials – constitutive models (1/4)

𝝈 =  
0

𝑡

2𝐺 𝑡 − 𝜏
𝑑𝒆

𝑑𝜏
𝑑𝜏 + 𝑰 

0

𝑡

𝐾 𝑡 − 𝜏
𝑑Δ

𝑑𝜏
𝑑𝜏

𝝈 = 2𝐺𝒆+ 𝑰𝐾Δ Isotropic elasticity

Isotropic viscoelaticity

𝛔 – is the Cauchy stress tensor,
𝒆 – is the deviatoric strain tensor (strain deviator),
𝑰 – is a unit tensor, 
Δ – is the volumetric strain,
𝐺 - shear modulus,
𝐾 – bulk modulus,
𝐺 𝑡 − 𝜏 – is the deviatoric stress kernel function, 
𝐾 𝑡 − 𝜏 – is the volumetric stress kernel function,
t – is time 
τ – is the past time
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7. Viscoelastic materials – constitutive models (2/4)

𝐺 𝑡 = 𝐺∞ + 

𝑖=1

𝑛𝐺

𝐺𝑖𝑒
−
𝑡

𝜏𝑖
𝐺

𝐾 𝑡 = 𝐾∞ + 

𝑖=1

𝑛𝐾

𝐾𝑖𝑒
−
𝑡

𝜏𝑖
𝐾

𝜏𝑖
𝐾 =
𝜂𝑖
𝐾𝑖

𝜏𝑖
𝐺 =
𝜂𝑖
𝐺𝑖

𝛼𝑖
𝐺 =
𝐺𝑖
𝐺0

𝛼𝑖
𝐾 =
𝐾𝑖
𝐾0

𝐺0 = 𝐺∞ + 

𝑖=1

𝑛𝐺

𝐺𝑖

𝐾0 = 𝐾∞ + 

𝑖=1

𝑛𝐾

𝐾𝑖

𝐺 𝑡 = 𝐺0 1 − 

𝑖=1

𝑛𝐺

𝛼𝑖
𝐺 1 − 𝑒

−
𝑡

𝜏𝑖
𝐺

𝐾 𝑡 = 𝐾0 1 − 

𝑖=1

𝑛𝐾

𝛼𝑖
𝐾 1 − 𝑒

−
𝑡

𝜏𝑖
𝐾
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7. Viscoelastic materials – constitutive models (3/4)

nG=1

𝐺 𝑡 = 𝐺0 1 − 𝛼1
𝐺 1 − 𝑒

−
𝑡

𝜏1
𝐺

𝛽 =
𝑡

𝜏1
𝐺

𝐺 𝑡 = 𝐺0 1 − 𝛼1
𝐺 1 − 𝑒−𝛽
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7. Viscoelastic materials – constitutive models (3/4)
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Direct analogy of 𝛼1
𝐺

of the scalar damage parameter D 

𝐺 𝑡 = 𝐺0 1 − 𝛼1
𝐺 𝐸 = 𝐸0 1 − 𝐷
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8. FEM model of the SMC magnet (1/2)
Electromagnetic model

blue – coil (µR=1)

red – iron (B-H curve)

violet – air (µR=1)

blue – coil

pink – titanium

dark blue – iron

violet – stainless steel

red – aluminum

green – G10/G11

Mechanical model 
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8. FEM model of the SMC magnet (2/2)

G G1

1





𝐺 𝑡 = 𝐺0 1 − 𝜶𝟏
𝑮 1 − 𝑒

−
𝑡

𝝉𝟏
𝑮

𝐾 𝑡 = 𝐾0 1 − 𝜶𝟏
𝑲 1 − 𝑒

−
𝑡

𝝉𝟏
𝑲

D. Przenny. Finite element modelling of viscoelastic effects in 

superconducting Nb3Sn magnets, Master thesis (2022)

𝜶𝟏
𝑮 = 𝜶𝟏

𝑲

Only one parameter is needed to calibrate the 
viscoelastic model with one branch
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9. Elastic solution vs the experimental results (1/4)
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9. Elastic solution vs the experimental results (1/4)
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9. Elastic solution vs the experimental results (2/4)
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9. Elastic solution vs the experimental results (3/4)
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9. Elastic solution vs the experimental results (4/4)
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y = 162.13x3 - 118.18x2 + 50.858x - 0.3176
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10. Viscolastic solution (2/5)
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10. Viscolastic solution (3/5)

ViscoelasticElastic 10x magnified
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10. Viscolastic solution (4/5)
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10. Viscolastic solution (5/5)
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11. Impact of the friction coefficient (1/4)

𝜇 ≤
𝑇𝑎𝑛𝑔𝑒𝑛𝑡 𝑓𝑜𝑟𝑐𝑒

𝑁𝑜𝑟𝑚𝑎𝑙 𝑓𝑜𝑟𝑐𝑒

𝜇 = 2.9 Stainless steel on stainless steel
under vacuum conditions

E.A. Deulin, V.P. Mikhailov, Y.V. Panfilov, R.A. Nevshupa. Mechanics

and Physics of Precise Vacuum Mechanisms. Fluid Mechanics and Its

Applications 91, Springer 2010

𝜇 = 0,3
Large range of values
was analyzed
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11. Impact of the friction coefficient (3/4)
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11. Impact of the friction coefficient (4/4)
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12. Conclusions/ideas

• The strains on the cylinder are not symmetric, especially for the gauges 2T and 5T -> the 
FEM model based on symmetry cannot explain such results, full 360° should be developed 
and the reasons for the asymmetry studied

• Strain drop observed experimentally can be explained by the viscoelastic model. The 
experimental data can be used to calibrate the single constant of the viscoelastic model

• Friction plays a role in the strain drop mechanism, and could explain even up to 15 % of the 
strain drop

• The loss of stiffness of the Nb3Sn coil of ~50% necessary to obtain the experimentally 
measured strain drop of ~40% (SMC11T#2) seems however too large and the data for the 
2nd pre-load show clearly that with such decrease of stiffness the 2nd pre-load curve 
cannot be explained well

• The viscoelastic approach was shown to be easy to implement and solve as well as 
indicating the possibility of explaining the loss of pre-stress, further developments are
needed
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12. Conclusions/ideas

RT 4 K

Module
[105]

G11CR
[81]
G10

[80]
G-10

[85]
G-10

[85]
G-11

[105]
G11CR

[85] G-
10

[85]
G-11

[82]
G-

10CR

[106]
G10

E11 [GPa] 30 18.8 24.63 28 32 37 35.9 39.4 35.6 35
E22 [GPa] 27 18.9 27.38 22.4 25.5 35 29.1 32.9 32.94 35
E33 [GPa] 16 7.83 11.49 n/a n/a 24 n/a n/a 25.19 20
G12 [GPa] 6.8 n/a 5.52 n/a n/a 11.6 n/a n/a 10.35 n/a

G23 [GPa] 4.8 n/a 12.18 n/a n/a 8.2 n/a n/a 10.16 n/a
G13 [GPa] 5.7 n/a 12.18 n/a n/a 9.7 n/a n/a 10.13 n/a
12 [-] 0.21 n/a 0.194 0.1442 0.1462 0.27 0.212 0.2152 0.21 0.326
23 [-] 0.7 n/a 0.518 n/a n/a 0.71 n/a n/a 0.36 0.2983

13 [-] 0.2 n/a 0.455 n/a n/a 0.21 n/a n/a 0.24 0.3263

experiment

G10/G11

Estimates Theoretical


