

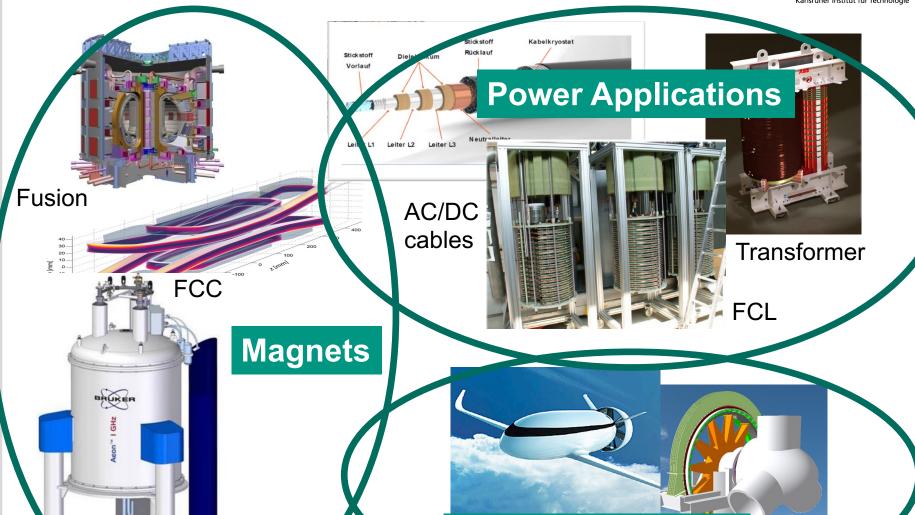
KC⁴: The KIT-CERN REBCO laboratory

Bernhard Holzapfel, Institute for Technical Physics, Karlsruhe Institute of Technology, 1st HiTAT workshop, 09.03.2023

- Motivation and concept
- Technical background
- Timeline and R&D topics
- Current Status

Acknowledment

Input from ITEP-Material, ITEP-Magnet and ITEP-Energy groups


A. Usoskin, U. Betz, K. Schlenga

Christian Barth, Amalia Ballarino, Andrzej Siemko, Luca Bottura

REBCO Coated Conductor Application Areas

Rotating Machines

NMR/MRI

Current Status and Challenges of Coated Conductors

- Coated Conductors are available on an industrial scale, but costs remain an issue
- Beyond J_c there exist a number of open development areas, which need to be improved (yield, mechanical issues, thin conductors, electromechanical properties of full conductor, ac losses) and combined
- Each application requires different and specific CC properties/architectures (e.g. magnetic field, temperature, ac-properties, stabilization, mechanical properties, insulation)
- New scientific ideas often require just a few 100m of very specific CC, not easily available from commercial vendors, since industry needs to focus on just a few CC variants to enable economic production
- There exists currently no company independent public research institution in Europe, which is able to bridge the gap between small scale basic materials research on PLD-based CC and larger scale industrial synthesis, being able to deliver 100m+ class, tailored, high quality Coated Conductors on demand

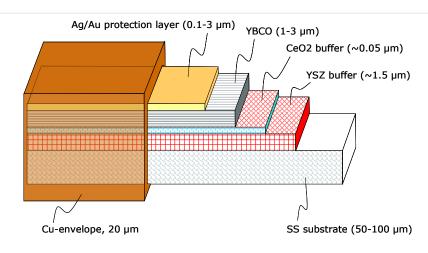
KC4: KIT-CERN Collaboration on Coated Conductor

KIT and CERN will establish a **joint, open HTS CC synthesis Lab**, which will bridge the gap between small scale materials research on CC and larger scale component requirement of **tailored**, **high quality full Coated Conductor architectures** in sufficiently long length

- Both power applications as well as magnet applications will be targeted
- Focus on R&D CC issues, not on low cost CC production
- KC⁴ is part of the Helmholtz R&D Programm "Materials and Technologies for the Energy Transition" at KIT
- KC⁴ is part of the High Field Accelerator Magnets R&D Programm at CERN
- Third party R&D projects towards tailored CC synthesis for specific applications will be become possible based on an HTS CC open foundry concept
- KC⁴ is based on established Bruker CC-technology for long CC and wide tapes, but Bruker is not involved in KC⁴- contract/operation
- Long length filamentization and ROEBEL cable fabrication will be feasible

Short intro to ITEP activities in superconductivity

- Motivation and concept
- Technical background
- Timeline and R&D topics
- Current status


BRUKER HTS

BHTS's process chain

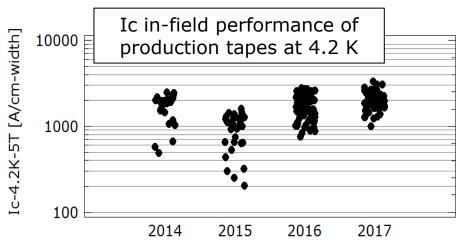


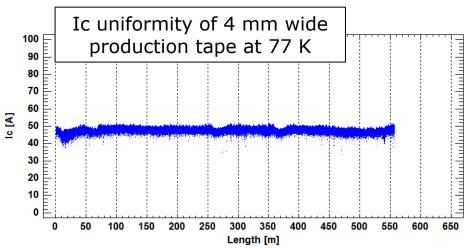
- The standard processing route for the BHTS coated conductors consists of ...
 - ... stainless steel substrate polishing and cleaning
 - ... YSZ buffer layer coating by vacuum deposition (ABAD)
 - ... Ceria and YBCO layer coating by vacuum deposition (PLD)
 - ... Ag shunt layer coating by vacuum deposition (evaporation) and Ag layer annealing in O2 atmosphere
 - ... Cu encapsulation by plating
 - ... final inspection and quality check of the HTS tapes

Typical HTS layer stack

Idealized sketch of the BHTS process chain

Bruker Energy & Supercon Technologies (BEST)


BRUKER


BRUKER HTS at a glance

- BHTS pilot-line plant (about 2000 sqm operation area), max. capacity 25 km p.a. (further ramp-up to 100 km p.a. possible within the plant)
- HTS tapes for ultra-high magnetic field application at intermediate and low temperatures, Ic at 4.2 K, 30 T, B//c exceeding 750 A/cm-width

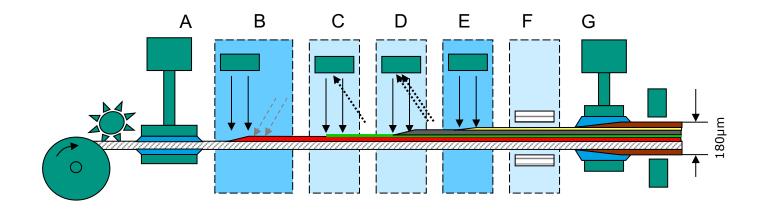
 Tape width 4 mm and 12 mm (optionally 40 mm), the max. actual batch size for 4 mm is 600 m (max. tape length in 2014 was 200 m, production capability ramp-up to 600m started in 2015)

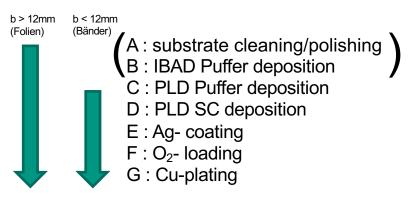
BRUKER HTS R&D-line equipment

To be transferred to KIT....

Tape processing equipment with different substrate handling concepts (batch and reel-toreel R2R processes) including stabilization

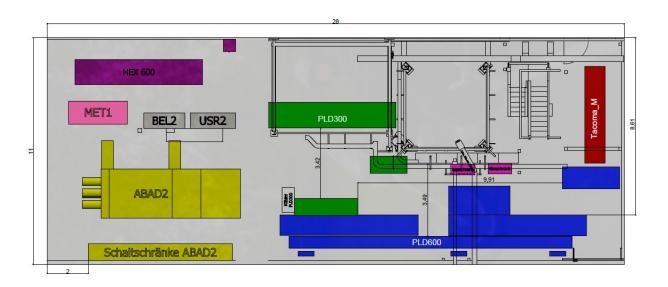
A


PLD


ABAD vacuum coater

PLD600 substrate drum

KC⁴ Coated Conductor Synthesis Steps


+ characterization (structural, electrical, mechanical)

USP/USR-F/USR-B/POL ABAD HEX600+PLD300/600 HEX600+PLD300/600 Tacoma-M/MET-F Tacoma-O/BEL-F PLA

e.g. TapeStar

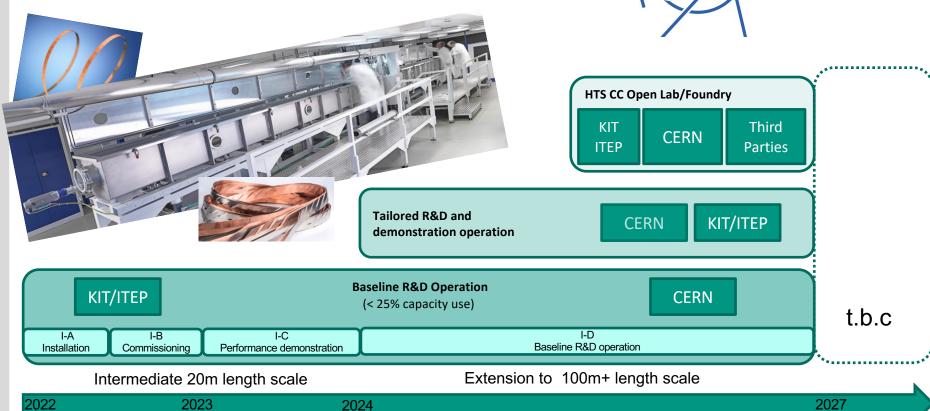
Core KC⁴ Lab space

Transfered Bruker equipment list

USR-F*	substrate cleaning
USP*	tape spooling
USR-B*	reel-to-reel
	substrate cleaning
POL*	substrate polishing
ABAD	IBAD deposition
HEX 600	tape handling
PLD300	PLD
PLD600	long length PLD
Takoma-M	Ag-coating
Takoma-O	O-loading
MET-F	Ag-coating
BEL-F	O-loading
PLA*	Cu-plating
TapeStar*	J _c -characterization

*: equipment located in other ITEP labs

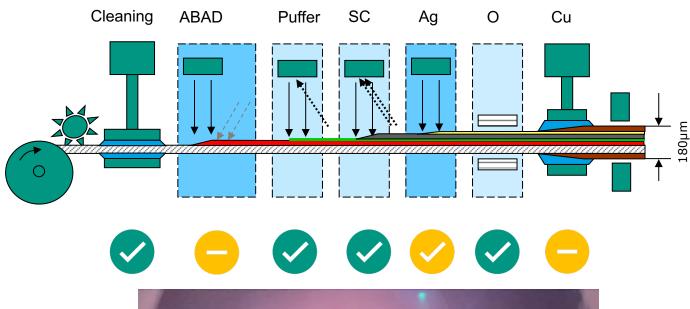
ITEP wide > 500 m² lab space dedicated to KC⁴


Short intro to ITEP activities in superconductivity

- Motivation and concept
- Technical background
- Timeline and R&D topics
- Current status

KC⁴: Baseline R&D Topics

- Investigate scaling laws to transfer small scale PLD materials development results towards larger scale Coated Conductor production systems
- Address specific Coated Conductor architectures needed for the R&D program at CERN and KIT
- Investigate and improve electromechanical properties of full coated conductor architectures (mechanical stability, interface resistance, thermal properties,....)
- Evaluate in-line quality control systems
- Establish accelerated materials development concepts
- **...**.



- Motivation and concept
- Technical background
- Timeline and R&D topics
- Current Status

Current Project Status

(intermediate 20m length scale)

1st full deposition run on march 1st, 2023

