

fee2 💽

11

ASICs for photo-detectors

OMEGA design group S. Ahmad, P. Barrillon, S. Blin, S. Callier, S. Conforti, F. Dulucq, J. Fleury, C. de La Taille, <u>G. Martin-Chassard</u>, L. Raux, N. Seguin-Moreau, D. Thienpont http://omega.in2p3.fr

Orsay Micro Electronics Group Associated

- MAROC : 64 channels chip for multianode photomultiplier readout
- SPIROC : 36 channels chip for Silicon PM readout
- PARISROC : 16 channels chip for PM tube readout

<u>()mega</u>

MAROC : MultiAnode Read-Out Chip

- Started with OPERA_ROC (2001)
 - 32 Channels in BiCMOS 0.8 µm for H7500
 - 3000 chips produced in 2002
 - Equiped OPERA in Gran Sasso
- MAROC1 (2004)
 - First prototype with 64 channels
 - AMS SiGe 0.35 µm (12 mm², Pd=5 mW/ch)
- MAROC2 (2006)
 - 1000 chips produced and bonded on a compact PCB for ATLAS luminometer (ALFA) for H7546
 - Also equips Double-Chooz, Menphyno, medical imaging...
- MAROC3 (2009)
 - Lower power dissipation
 - Wilkinson ADC added
 - 1000 chips produced

MAROC3 – Main Features

- 64 channel inputs
- Low input impedance (50-100 Ω)

mega

- Variable gain preamps (8 bits/ch.)
- Variable slow shaper (20-100 ns)
- 2 T&H (baseline and max.)
- 1 mux. analog charge output
- 1 digitized charge output (8, 10 or 12 bits ADC)
- 64 trigger outputs2 OR outputs
 - low digital output levels
- 10 bits DAC as threshold
- Internal bandgap for voltage references
- P = 3 mW/ch
- 828 slow control parameters

64 PM inputs

1 MUX charge output

Scurves with FSB1

Gain correction and crosstalk

<u>()mega</u>

Variant (2010) : SPACIROC for JEM/EUSO (mega

ASIC Functions:

Analog part:

- 1. Photoelectron counting (20-100MHz)
- 2. Time Over Threshold (collab. JAXA/Riken)

Digital part :

- 1. Digitization,
- 2. Memory,
- 3. Send data to FPGA for triggering

Crucial points

- Power consumption < 1 mW/ch
- data flow ~ 384 bits / 2.5 μs
- Radiation tolerance : triple voting

SPACIROC : 16mm²

SPIROC for SiPM readout

- SPIROC : Silicon Photomultiplier Integrated Readout Chip
- Developed to read out the analog hadronic calorimeter for CALICE (ILC)
- DESY collaboration (EUDET project)
- Chip embedded in detector :
 - → Power consumption is an important issue
 - \rightarrow few external components
- Big detector with huge number of channels (8 millions)

(0.36m)² Tiles + SiPM + SPIROC (144ch)

SPIROC : One channel schematic

SPIROC main features

- 36 channels
- Internal input 8-bit DAC (0-5V) for individual SiPM gain adjustment
- Energy measurement : 14 bits
 - 2 gains (1-10) + 12 bit ADC: 1 pe → 2000 pe
 - Variable shaping time from 50ns to 100ns
 - pe/noise ratio : 11
- Auto-trigger on 1/3 pe (50fC)
 - pe/noise ratio on trigger channel : 24
 - Fast shaper : ~10ns
- Time measurement :
 - 12-bit Bunch Crossing counter (step=200ns)
 - 12 bit TDC step~100 ps
- Analog memory for time and charge measurement : depth = 16
- Low consumption : $\sim 25 \mu W$ per channel (in power pulsing mode)
- Individually addressable calibration injection capacitance
- Embedded bandgap for voltage references
- Embedded 10 bit DAC for trigger threshold and gain selection
- Multiplexed analog output for physics prototype DAQ
- 4k internal memory and Daisy chain readout

SPIROC : general schematic

Read out by token ring and power pulsing

- Readout architecture common to all CALICE calorimeters
- Minimize data lines & power

mega

Data bus

Chip 0	Acquisition	A/D conv.	DAQ		IDLE M	ODE
Chip 1	Acquisition	A/D conv.	IDLE	DAQ		IDLE MODE
Chip 2	Acquisition	A/D conv.	IDLE			IDLE MODE
Chip 3	Acquisition	A/D conv.	IDLE			IDLE MODE
Chip 4	Acquisition	A/D conv.	IDLE		DAQ	IDLE MODE
	1ms (.5%) 1% duty	.5ms (.25%) Cycle	.5ms (.25%)	99	199ms (99%) 9% duty cyd	cle

SPIROC layout

Techno : AMS SiGe 350nm - package : TQFP 208 - die size : 8x4= 32mm²

<u>(mega</u>

SPIROC2 input DAC

- Input DAC to optimize SiPM bias voltage
- 8-bit DAC, 5V range, LSB=20mV
- 36 DAC (one per channel)
- Ultra low power (<1µW) : no power pulsing
- Can sink 10 µA leakage current
- Linearity : ± 1%
- DAC uniformity between the 36 channels : ~3%

Residuals (V)

Gisèle Martin-Chassard - FEE Bergamo 27 May 2011

S-curves on fast shaper

- Trigger efficiency versus Threshold (1UDAC=2mV)
- Qinj=50 fC (1/3 pe-)

mega

SPIROC2 performance

Gisèle Martin-Chassard - FEE Bergamo 27 May 2011

mega

Single-Photon Peaks

SiPM SPECTRUM with Autotrigger ()mega

SPIROC status

•1000 chips produced in March 2010 to make a demonstrator (Large scale tecnological prototype)

- EASIROC : analog version of SPIROC in 2009
- Other applications:
 - astrophysics PEBS (Aachen),
 - PET (Roma, Pisa, Valencia),
 - nuclear physics (IPNO),
 - Vulcanology (Napoli)

<u> Mega</u>

- PArISROC stands for : Photomultiplier Array Integrated in SiGe Read-Out Chip
- Developed for PMm2 project which proposes to segment the very large surface of photo detection in macro pixels made of 16 photomultiplier tubes connected to an autonomous front-end electronics.
- Replace large PMTs (20") by groups of 16 smaller ones (12") with central ASIC
 - Independent channels
 - Auto-trigger on 1/3 pe
 - charge (300 pe) and time (1 ns) measurements
 - Only one wire out (DATA + VCC)
 - common High Voltage for PMTs
- Main applications in large Water Cerenkov
 Chip studied by LAGUNA, MENPHYS, LHAASSO...

Gisèle Martin-Chassard - FEE Bergamo 27 May 2011

mega

PARiSROC characteristics

- ✓ 16 preamplifier inputs
 - ✓ Input dynamic range : 0 → 300 pe (0 → 50pC) with 1% linearity good precision obtained by 2 preamps (high and low gain)
 - \checkmark Variable gain by a factor 4 (8 bits) for PMTs gain adjustment
- ✓ 16 trigger outputs:
 - ✓ Fast shaper (t=15ns) + low offset discriminator
 - \checkmark Threshold provided by common internal 10bit DAC
 - ✓ 100 % eficiency at 1/3 pe
 - ✓ "OR" of 16 triggers output
- ✓ 1 multiplexed charge output :
 - \checkmark Slow shaper with variable shaping time :
 - τ =25ns,50n or 100ns
 - ✓ Dual Track & Hold
- ✓ 8 to 10-bit internal ADC (Wilkinson) for charge and fine time measurement
- ✓ Internal TDC : 24 bits counter (coarse) + fine 1 ns
- One serial data output : channel number + Charge + time coarse and fine
- ✓ Dissipation : 5mW/ch

PARISROC general schematic

Time measurement

<u>(meaa</u>

Digital part

<u>(mega</u>

4 modules: Acquisition, Conversion,

Read Out and Top manager.

Acquisition part manages the track & hold Conversion part converts charge and time into 10 bits digital values saved in registers (RAM) Read Out sends the data from memory to an external system

SELECTIVE READ OUT

	PARIROC 2
Conversion Time	26 µs
Readout Time	25 µs
Total cycle duration	51 µs

Only hit channels are read Readout clock : 40 MHz Max Readout time (16 ch hit) : 25 µs 51 bits of data / hit channel

	PARIROC version 2
Channel number	4
Coarse time counter	24
Extra Coarse time	1
Gain used	1
Charge converted	10
Fine time (TDC) used	1
Fine time (TDC) converted	10
Total	51 bits

PARISROC2 layout

<u>Technology</u>: AMS SiGe 0.35 μm <u>Surface</u>: 18 mm² <u>Package</u>: CQFP160

Auto-gain test (ADC measurements)

The whole chain is tested, injecting a charge at the input of the channel: the signal is amplified, auto-triggered, held in the SCA cell and converted by the ADC.

mega

The charge measurements for different injected charges setting the gain threshold at 60 p.e.

PARISROC TDC ramps Noise

PMT measurements

<u> Mega</u>

PARISROC 2 ASIC has been tested with 1-inch PMT.

Charge spectrum

Charge histograms 1-inch PMT at a voltage of 1200 V (gain around 10⁷) versus thresholds (350, 385, 390 and 395). The pedestal is at 58 ADC channels.

Demonstrator realisation

Demonstrator realized by the IPNO with 16 x 8-inch Hamamatsu tubes. This demonstrator and the PARISROC2 ASIC in a water-tight box was put in a water tank by **MEMPHYNO** collaboration (APC and LAPP).

Conclusion

- 1000 chips MAROC and SPIROC produced in dedicated run in 2010.
- Chips (SoC) very versatile, many parameters tunable (gain, speed...)
- More information on PARISROC, MAROC or SPIROC on website http://omega.in2p3.fr

Thank you for your attention

AHCAL: Technological prototype

- SiPM detector: 40 layers of 1.5 m² 2c thick steel plates interleaved with cassettes of 296 scintillating tiles (3x cm²) readout by SiPMs
- 8 Millions of channels
- Few external components
- FE Chip embedded inside the detector
 - Thickness:critical issue: Mother board: (HBU) are sandwiched between 2 absorber plates

Power: (25+15)µW / channel

Mephy SiPM

100 cm

@Peter Goetlicher's talk

HCAL Layer Distributor

27 May 2011 Gisèle Martin-Chassard - FEE Bergamo 27 Ma Soulet 1 Pulsing Workshop

Overall behaviour in 10 bits

- <u>()mega</u> • Complete chain : autotrigger + T&H + internal ADC
- Linearity : 1%, noise 6 UADC

Power pulsing: « Awake » time

SPIROC charge measurement

Internal Wilkinson ADC

- Wilkinson ADC well suited to multichannel conversion
- Very good uniformity and linearity

Gisèle Martin-Chassard - FEE Bergamo 27 May 2011

<u>()mega</u>