SuperB: Physics, SuperB Accelerator and Detector

Nicola Neri INFN - Sezione di Milano on behalf of the SuperB collaboration

8th International Meeting on Front-End Electronics Bergamo, 24-27 May 2011

Outline

Physics:

discovery potential of a SuperB factory.

Accelerator:

the innovative scheme of SuperB.

Detector:

- general overview of the detector;
- vertex detector specifications.

Status of the project:

Project approved and funded. Plans for organization, construction and running.

Physics Progress Report [arXiv:1008.1541]

Nicola Neri - SuperB: Physics, Accelerator and Detector

24 May 2011

Data sample

- ► Y(4S) region:
 - > 75 ab^{-1} at the Y(4S)
 - Also run above / below the Y(4S)
 - ~75 x10⁹ B, D and τ pairs
- ψ(3770) region:
 - ▶ 500 fb⁻¹ at threshold
 - Also run at nearby resonances
 - ► ~2 x 10⁹ D pairs

24 May 2011

τ Lepton Flavor Violation (LFV)

▶ v mixing leads to a low level of charged LFV (B~10⁻⁵⁴).

Enhancements to observable levels are possible with new physics.

INFN

Nicola Neri - SuperB: Physics, Accelerator and Detector

24 May 2011

B_{u,d} physics: Rare Decays

• Example: $B \to K^{(*)} \nu \overline{\nu}$

INFN

- \blacktriangleright Need 75ab⁻¹ to observe this mode.
- \blacktriangleright With more than 75ab⁻¹ we could measure polarization.

 $B_{s} \text{ physics}$ • Can cleanly measure A_{SL}^{s} using Y(5S) data $A_{SL}^{s} = \frac{\mathcal{B}(B_{s} \to \overline{B}_{s} \to X^{-}\ell^{+}\nu_{\ell}) - \mathcal{B}(\overline{B}_{s} \to B_{s} \to X^{-}\ell^{+}\nu_{\ell})}{\mathcal{B}(B_{s} \to \overline{B}_{s} \to X^{-}\ell^{+}\nu_{\ell}) + \mathcal{B}(\overline{B}_{s} \to B_{s} \to X^{-}\ell^{+}\nu_{\ell})} = \frac{1 - |q/p|^{4}}{1 + |q/p|^{4}}$

 $\sigma(A_{SL}^s) \sim 0.004$ with a few ab^{-1}

SuperB can also study rare decays with many neutral particles, such as $B_s \rightarrow \gamma \gamma$, which can be enhanced by SUSY.

INFN

• Collect data at threshold and at the $\Upsilon(4S)$.

Benefit charm mixing and CPV measurements.

Also useful for measuring the Unitarity Triangle angle γ (strong phase in D \rightarrow K $\pi\pi$ Dalitz plot).

24 May 2011

Interplay

Combine measurements to elucidate structure of new physics.

	Observable/mode	H^+	MFV	non-MFV	NP	Right-handed	LTH			SUS	Y	
		high $ aneta$			Z penguins	currents		AC	RVV2	AKM	δLL	FBMSSM
1	$ au ightarrow \mu \gamma$							***	***	*	***	***
•	$ au ightarrow \ell \ell \ell$						***					
1	$B ightarrow au u, \mu u$	★ ★ ★ (CKM)										
	$B \to K^{(*)+} \nu \overline{\nu}$			*	***			*	*	*	*	*
1	$S \text{ in } B ightarrow K^0_S \pi^0 \gamma$					* * *						
1	S in other penguin modes			$\star \star \star (CKM)$		* * *		***	**	*	***	***
<i>s</i>	$A_{CP}(B ightarrow X_s \gamma)$			***		**		*	*	*	***	***
✓	$BR(B ightarrow X_s \gamma)$		***	*		*						
	$BR(B o X_s \ell \ell)$			*	*	*						
,	$B \to K^{(*)} \ell \ell$ (FB Asym)							*	*	*	***	***
v	$B_s ightarrow \mu \mu$							***	***	***	***	***
	eta_s from $B_s o J/\psi \phi$							***	***	***	*	*
	a_{sl}						***					
1	Charm mixing							***	*	*	*	*
•	CPV in Charm	**									***	

 \checkmark = SuperB can measure this

 $\star \star \star$ signals large effects, $\star \star$ visible but small effects and \star implies that the given model does not predict sizable effects in that observable.

24 May 2011

Precision CKM constraints

- Unitarity Triangle Angles
 - $\sigma(\alpha) = 1 2^{\circ}$
 - $\sigma(\beta) = 0.1^{\circ}$
 - $\sigma(\gamma) = 1 2^{\circ}$
- CKM Matrix Elements
 - ► |V_{ub}|

INFN

- Inclusive $\sigma = 2\%$
- Exclusive $\sigma = 3\%$
- ► |V_{cb}|
 - ► Inclusive $\sigma = 1\%$
 - Exclusive $\sigma = 1\%$
- ► |V_{us}|
 - Can be measured precisely using τ decays
- \blacktriangleright $|V_{cd}|$ and $|V_{cs}|$
 - can be measured at/near charm threshold.
- SuperB Measures the sides and angles of the Unitarity Triangle

Physics program in a nutshell

- Probe new physics observables in wide range of decays.
 - Pattern of deviation from Standard Model can be used to identify structure of new physics.
 - Clean experimental environment means clean signals in many modes.
 - Polarized e⁻ beam benefit for precision electroweak measurements and for τ LFV searches.
- Best capability for precision CKM constraints of any existing/ proposed experiment.
 - Measure angles and sides of the Unitarity triangle
 - Measure other CKM matrix elements at threshold and using τ data.

Accelerator Progress Report [arXiv:1009.6178]

Nicola Neri - SuperB: Physics, Accelerator and Detector

A new generation collider

- SuperB is a second generation flavor factory aiming for a luminosity of 10³⁶ cm⁻²s⁻¹ = 1 kHz/nb
- The two orders of magnitudes luminosity gain with respect to the first generation B factories is obtained increasing the density of the bunches at the interaction point (IP) by demagnifying their vertical size to ~30 nm
- To reach this goal the amplitude of the betatron oscillations must be kept at minimum
 - optimal ring lattice design to minimize the radial emittance
 - precise magnets alignment and machine tuning to minimize the emittance coupling
 - large Piwinsky angle, $\phi = \frac{\sigma_z}{\sigma_x} \tan \frac{\theta}{2}$ and crab waist collision scheme to overcome the beam-beam luminosity limit

Path to hight luminosity

$$\mathcal{L} \sim f_{\text{coll}} \frac{N^+ N^-}{4\pi \,\sigma_x \,\sigma_y} = 10^{36} \,\text{cm}^{-2} \,\text{s}^{-1}$$

- A. Numerator \mathcal{I} (Currents) 1÷2 A \mathcal{I} 10÷20 A
 - Wall plug power (Electric monthly bill)~ proportional to current, Longitudinal Fast Instability: limit ~ 5 10³⁵/cm²s

- B. Denominator \searrow (bunch size) PEP-II 100 x 3 μ m² \searrow SuperB 100 μ m x 30 nm
 - How to squeeze the vertical bunch size to 30 nm ?

Hour glass shaped bunch $(a) \sigma_y = 30 \text{ nm}$

 $\sigma_y \times \sigma_{y'} = \epsilon_y$ **CROSS SECTION ANGULAR DIVERGENCE @ IP** EMITTANCE (CHARACTERISTIC OF THE RING)

- PEP-II emittance = <u>1.5nm x Rad</u> Angular divergence ~ 50 mRad = 50 micron / mm Bunch collision length should be ~ 2 μm
- ATF state of the art emittance = <u>2pm x Rad</u> Angular divergence ~ 67 microRad = 67 nm / mm
- SuperB emittance ~ <u>5pm x Rad</u> Angular divergence ~ 166 microRad = 166 nm / mm Bunch collision length ~ 0.6 mm

Large crossing angle collision scheme

Crab Waist technique benefits:

- maximize geometrical overlap of beams;
- reduction of vertical tune shift;
- suppression of vertical synchrobetatron resonances.

Machine parameters

	Units	HER	LER	HER	LER	HER	LER	
Machine		Sup	er B	PE	P II	Super KEKB		
Circumference	m	125	58.4	22	00	3016.3		
Frequency turn	Hz	2.38	E+05	1.36	E+05	9.95E+04		
# bunch	978 1732				32	2500		
Frequency collision	MHz	23	33	23	236		249	
Full crossing angle	Rad	0.0)66	0.0	000	0.083		
Energy	GeV	6.7	4.18	9.0	3.1	7	4	
Energy ratio		1.	60	2.9	90	1.75		
βx	cm	2.6	3.2	35	40	2.4	3.2	
βy	μ <i>m</i>	253	205	9000	10800	410	270	
coupling	%	0.25	0.25	0.24	0.45	0.35	0.40	
Radial emittance Ex	nm	2.07	2.37	55	33	2.4	3.1	
Vertical emittance sy	pm	5.18	5.93	1300	1500	8.4	12.4	
Bunch length	cm	0.5	0.5	1.15 1.25		0.5	0.6	
Current	А	1.89	2.44	2.07 3.21		2.6	3.62	
# particles/bunch	10 ¹⁰	5.08	6.56	5.49 8.52		6.55	9.13	
Hor. size @ IP σx	μm	7.34	8.71	43.87	36.33	7.75	10.62	
Ver. size @ IP σy	nm	36.2	34.9	3421	4025	59.0	59.0	
Piwinsky angle		22.50	18.95	0.00	0.00	26.79	23.46	
Horizontal tune shift	%	0.21	0.33	Ę	5	0.28	0.28	
Vertical tune shift	%	9.89	9.55	5		8.75	9.00	
Luminosity	10³⁶ Hz/cm²	1.	02	0.012		0.80		

Synchrotron light properties @ SuperB

- Comparison of brightness and flux from bending magnets and undulators for different energies dedicated SL sources & SuperB HER and LER
- Synchrotron light properties from dipoles are competitive
- Assumed undulators characteristics as NSLS-II
- Light properties from undulators still better than most LS, slightly worst than PEP-X (last generation project)

Nicola Neri - SuperB: Physics, Accelerator and Detector

Detector Progress Report [arXiv:1007.4241]

Nicola Neri - SuperB: Physics, Accelerator and Detector

25

Nicola Neri - SuperB: Physics, Accelerator and Detector

24 May 2011

Sys	R&D	Engineering
SVT	Layer 0 thin pixels Low mass mechanical support	Silicon strip layers Readout architecture
DCH	High speed waveform digitizing Cluster counting	CF mechanical structure Gas speed, cell size
Barrel PID	Photon detection for quartz bars	Standoff box replacement
Forw PID	Time of flight option Focusing RICH option	Mechanical integration Electronics
EMC	LYSO characterization Light detection, Other crystals Prototype Module Test	Readout electronics Forward EMC mechanical support
IFR	SiPM performance Prototype Module Test	Location of photo-detectors Absorber thickness definition
ETD	High speed data link Radiation hard devices	Trigger strategy Bhabha rejection

		-				
6 Layer SVT	ayer SVT LO Striplets @ ~1.5 cm if background is acceptable as default. MAPS Option. Retain 5 Layer outer detector.					
SVT – DCH	~> than 20 cm determined by beam element					
transition radius	cryostats to allow easy installation	Decision 2011				
Backward EMC	Inexpensive Veto device bringing 8-10% sensitivity improvements for $B \rightarrow \tau v$. Low momentum PID via TOF? Technical Issues?					
Forward PID	Physics gains about 5% in $B \rightarrow K^{(*)}vv$. Somewhat larger gains for higher multiplicities Open technical options/interactions with EMC					
Absorber in IFR	Optimized layout. Plan to reuse yoke. Still need to resolve engineering questions.					

SVT design and FEE specifications

The SuperB Silicon Vertex Tracker (SVT)

▶ SVT provide precise tracking and vertex reconstruction, crucial for time dependent measurements, and perform stand-alone tracking for low p_t particles.

Based on BaBar SVT: 5 layers silicon strip modules + Layer0 at small radius to improve vertex resolution and compensate the reduced SuperB boost w.r.t PEPII

Physics performance and back. levels set stringent requirements on Layer0:

 $R \sim 1.5$ cm, material budget < 1% $X_{0,,,}$

hit resolution 10-15 μm in both coordinates
Track rate > 5MHz/cm² (with large cluster too!), Total Integrated Dose > 3MRad/yr

SuperB SVT Layer 0 technology options

Striplets option: mature technology, not so robust against background occupancy.

- \blacktriangleright Marginal with back. track rate higher than ~ 5 MHz/cm²
- FE chip development & engineering of module design needed

Hybrid Pixel option: viable, although marginal.

Reduction of total material needed!

T

.

-

-

 ▶ FE chip with 50x50 μ m², pitch & fast readout (hit rate 100MHz/cm2) under development → FE prototype chip (4k pixel, ST 130 nm) successfully tested with pixel sensor matrix connected.

CMOS MAPS option: new & challenging technology.

- Sensor & readout in 50 µm thick chip!
- Extensive R&D (SLIM5-Collaboration) on
 - \blacktriangleright Deep N-well devices 50x50 μm^2 with in-pixel sparsification.
 - Fast readout architecture with target hit rate 100MHz/cm2 & 100 ns timestamping developed..
- CMOS MAPS (4k pixels) successfully tested with beams.

Thin pixels with Vertical Integration: reduction of material and improved performance.

- Two options are being pursued (VIPIX-Collaboration)
 - DNW MAPS with 2 tiers
 - Hybrid Pixel: FE chip with 2 tiers + high resistivity sensor

24 May 2011

SuperB SVT Layer 0 technology options

Striplets option: mature technology, not so robust against background occupancy.

- Marginal with back. track rate higher than ~ 5 MHz/cm²
- **FE chip development** & engineering of module design needed

Baseline solution

Hybrid Pixel option: viable, although marginal.

Reduction of total material needed!

T

 ► FE chip with 50x50 μ m^{2,} pitch & fast readout (hit rate 100MHz/cm2) under development \rightarrow FE prototype chip (4k pixel, ST 130 nm) successfully tested with pixel sensor matrix connected.

CMOS MAPS option: new & challenging technology.

- Sensor & readout in 50 µm thick chip!
- Extensive R&D (SLIM5-Collaboration) on
 - \blacktriangleright Deep N-well devices 50x50 μm^2 with in-pixel sparsification.
 - Fast readout architecture with target hit rate 100MHz/cm2 & 100 ns timestamping developed..
- CMOS MAPS (4k pixels) successfully tested with beams.

Thin pixels with Vertical Integration: reduction of material and improved performance.

- Two options are being pursued (VIPIX-Collaboration)
 - DNW MAPS with 2 tiers
 - Hybrid Pixel: FE chip with 2 tiers + high resistivity sensor

R&D for upgrade See S. Zucca talk

Symmetric coverage down to 300 mrad FW and BW

Readout chip for strip modules

- Design of new readout chip(s) for striplets/strip detector is needed since existent chips do not match all the requirements:
 - Analog info is needed for: dE/dx (with high dynamic range required for low p_T tracks >10 MIPs), position resolution, hit time resolution.
 - Very high rates in inner layers due to background:
 - L1-L3: 700-300 KHz/strip up to 2 MHz/striplet in Layer0 (safety factor x5 included)
 - Short shaping time needed to minimize inefficiency due to overlapping hits. L0: 25 ns, L1-L3: 50-100ns.
 - Long shaping time needed for long module in L4-L5 to reduce noise contribution: 0.5 – 1 µs give reasonable S/N with acceptable inefficiency (rates 25-50 KHz/strip)
- Probably need to develop 2 different chips: one for L0/L1-L2-L3 and one for L4-L5.

Trigger

- frequency: 150 kHz (1.5 Safety Factor) <-- several implication in readout chip design (number of output lines, fast ouput clock).
- jitter: 100 ns (the goal is to go down to 30 ns)
- latency: 10 μs (1.7 Safety Factor; Level 1 design is 6 μs)
- DAQ window: 100-300 ns
- Time stamping: 30 MHz (5-40 MHz)
- Chip readout clock: 50 MHz

• Within the SuperB – SVT group we started to evaluate if the readout architecture developed for Layer0 pixels could be adapted for strip readout, but contribution in this area is very welcome!

Future Activities

- A lot of activities: new groups are welcome!
- Potential contributions in several areas:
 - Development of readout chips
 - Detector design, fabrication and tests
 - Simulation & reconstruction
- Groups now working for the SVT:
 - Italy: Bologna, Milano, Pavia, Pisa, RomaIII, Torino, Trento, Trieste
 - UK: QM, RAL
- Expression of interest from Strasbourg & other UK groups.

• Contacts: Giuliana Rizzo (Pisa)

Status of the Project

Nicola Neri - SuperB: Physics, Accelerator and Detector

24 May 2011

- SuperB inserted in April 2010 among the Italian National Research Program(PNR) Flagship Projects
 - Cooperation of INFN and IIT (Italian Institute of Technology): HEP experiment and light source
- In december 2010 first funding of 19M€ as first part of a pluriennal funding plan

Internal to Ministry of Research

- In april 2011 approval of the PNR, including 250M€ for SuperB.
 - Press release at: <u>http://www.istruzione.it/web/ministero/cs190411</u>
 - PNR at: <u>http://www.istruzione.it/web/ricerca/pnr</u>

- MoUs for TDR work in place with Canada, France, UK, Russia and SLAC.
- Negotiation with partner countries for construction MoUs started
- Expect that
 - Important in-kind contribute by the re-use of parts of PEP-II and Babar, for a value of about 135M€
 - For the accelerator and infrastructure most funding will be Italian
 - For the detector only half of the needed funding will come from Italy (about 25M€)
- The project will be managed through a European Research Infrastructure Consortium (ERIC)

SuperB Parameters

		Base	e Line	Low Er	nittance	High (Current	Tau-c	harm	LED
Parameter	Units	HER	LER	HER	LER	HER	LER	HER	LER	
LUMINOSITY	cm ⁻² s ⁻¹	(e+) 1.00	E+36	(e+) 1.00	(e-) E+36	(e+) 1.00	E+36	1.001	(e-) E+35	dic
Energy	GeV	6.7	4.18	6.7	4.18	6.7	4.18	2.58	1.61	HER
Circumference	m	12:	58.4	12:	58.4	12	58.4	125	8.4	arc
X-Augle (full)	mrad	(56	6	56	(56	6	6	arc
β. @ IP	сш	2.6	3.2	2.6	3.2	5.06	6.22	6.76	8.32	
β., @ IP	сш	0.0253	0.0205	0.0179	0.0145	0.0292	0.0237	0.0658	0.0533	
Coupling (full current)	96	0.25	0.25	0.25	0.25	0.5	0.5	0.25	0.25	
Emittance x (with IBS)	nm	2.00	2.46	1.00	1.23	2.00	2.46	5.20	6.4	12
Emittance y	pm	5	6.15	2.5	3.075	10	12.3	13	16	HED Enormy
Bunch length (full current)	mm	5	5	5	5	4.4	4.4	5	5	
Beam current	mA	1892	2447	1460	1888	3094	4000	1365	1766	67 CoV
Buckets distance	#		2		2		1	1	l	0.7 Gev
Ion gap	96		2		2		2	2	8	
RF frequency	MHz	4	76.	41	76.	4	76.	47	6.	
Revolution frequency	MHz	0.3	238	0.2	238	0.	238	0.2	38	
Harmonic number	#	19	998	19	98	19	998	19	98	Polarization ρ^*
Number of bunches	#	9	78	9	78	19	956	19	56	~ 0.5m
N. Particle/bunch (1010)	#	5.08	6.56	3.92	5.06	4.15	5.36	1.83	2.37	80% for e ⁻
$\sigma_{\rm x}$ effective	μια	165.22	165.30	165.22	165.30	145.60	145.78	166.12	166.67	
$\sigma_{\!_y} @ \mathbf{I}\!^{\mathbf{p}}$	μm	0.036	0.036	0.021	0.021	0.054	0.0254	0.092	0.092	
Piwinski angle	rad	22.88	18.60	32.36	26.30	14.43	11.74	8.80	7.15	LER Energy:
Σ_{t} effective	μια	23	3.35	233	3.35	20	5.34	233	.35	
Σ _y	μm	0.	050	0.0	030	0.	076	0.1	31	4.2 GeV
Hourglass reduction factor		0.9	950	0.9	950	0.	950	0.9	50	et.15
Tune shift x		0.0021	0.0033	0.0017	0.0025	0.0044	0.0067	0.0052	0.0080	FF
Tune shift y		0.097	0.097	0.0891	0.0892	0.0684	0.0687	0.0909	0.0910	1 e -
Longitudinal damping time	msec	13.4	20.3	13.4	20.3	13.4	20.3	26.8	40.6	3415
Energy Loss/turn	MeV	2.11	0.865	2.11	0.865	2.11	0.865	0.4	0.17	
Momentum compaction (10*)		4.36	4.05	4.36	4.05	4.36	4.05	4.36	4.05	
Energy spread (10 ⁻⁰) (full current)	dE/E	6.43	7.34	6.43	7.34	6.43	7.34	6.43	7.34	
CM energy spread (10 ⁻⁴)	dE/E	5	5.0	5	.0	5	5.0	5.	.0	
Total lifetime	min	4.23	4.48	3.05	3	7.08	7.73	11.4	6.8	arc
Total RF Wall Plug Power	MW	16	5.38	12	.37	28	.83	2.8	81	HER
										arc

- Choose the site asap! Foreseen end of next week
 - ▶ The preferred site is Tor Vergata close to LNF

Complete the Technical Design Report

• End of 2011/Mid 2012

Prepare the transition from TDR Phase to Construction

- Collaboration will start formally forming in Elba meeting, May 2011 (next week)
- Start recruitment for the construction: mainly Accelerator Physicists and Engineers
- Completion of construction foreseen end of 2015
 First collisions mid 2016

Backup slides

Nicola Neri - SuperB: Physics, Accelerator and Detector

24 May 2011

Golden Measurements: CKM

 Comparison of relative benefits of SuperB (75 ab⁻¹) vs. existing measurements and LHCb (5 fb⁻¹) and the LHCb upgrade (50 fb⁻¹).

SuperB is designed with 80% longitudinal polarization for e

Polarization allows:

- Precision Measurement in ElectroWeak sector
- EDM and g-2 in τ .
- BKG reduction for LFV in τ .
- Polarized beams provide measurements of $sin^2\theta_w(eff)$ with comparable precision to SLD but at much lower energies.
- Polarization allows for NC Z-bb coupling measurement with better precision and different systematic w.r.t. LEP measurement of A_{FB}^b.

Diagrams	σ (nb)	A _{FB}	$A_{LR} (\text{Pol} = 100 \%)$
$ Z+\gamma ^2$	1.01	0.0028	-0.00051
$ Z ^2 + \gamma ^2$ No interference	1.01	0.0088	-0.00002

Interference term is $\sim g_A^e g_V^f$

Asymmetries at Z-pole for measured σ $A_{\rm FB} = \frac{\sigma_{\rm F} - \sigma_{\rm B}}{\sigma_{\rm F} + \sigma_{\rm B}}$ $A_{
m LR} = rac{\sigma_{
m L} - \sigma_{
m R}}{\sigma_{
m L} + \sigma_{
m R}} rac{1}{\langle |\mathcal{P}_{
m e}|
angle}$ $A_{\rm LRFB} = \frac{(\sigma_{\rm F} - \sigma_{\rm B})_{\rm L} - (\sigma_{\rm F} - \sigma_{\rm B})_{\rm R}}{(\sigma_{\rm F} + \sigma_{\rm B})_{\rm L} + (\sigma_{\rm F} + \sigma_{\rm B})_{\rm R}} \frac{1}{\langle |\mathcal{P}_{\rm e}| \rangle}.$

at LEP: I5M hadronic Z decays, unpolarized at SLC: 0.5M hadronic Z decays, polarized e⁻ at SuperB: Z-term ~30M, polarized e⁻

Expected stat. error: $\sigma(A_{LR}) = 4.6 \times 10^{-6}$ relative stat. error 1.1% (80% polarization). Systematics <0.5% on polarization needed

 $\sigma(\sin^2\theta_{\text{eff}})=1.8 \times 10^{-4}$ cfr SLC $\sigma(\sin^2\theta_{\text{eff}})=2.6 \times 10^{-4}$

$$A_{LR} \propto g_V^f \propto (T_3^f - 2Q_f \sin^2 \theta_{eff}^f)$$

Electroweak measurement @ SuperB

- 1. @Y(4S) . But hadronization correction.
- 2. Operate at a ccbar vector resonance above open charm threshold $\Psi(3770)$, use the same analysis method as for b.

Polarization at low energies with high luminosity is needed

That is included in the SuperB design

$$\mathcal{L} = f_c \int d^3 \mathbf{x} \, dt \, \rho_1(\mathbf{x}, t) \cdot \rho_2(\mathbf{x}, t) v_{\text{rel.}} = 10^{36} \text{cm}^{-2} \text{s}^{-1} = 1 \text{kHz/nb}$$

- f_c is the bunch collision frequency
- $\rho_i(\mathbf{x}, t)$ is the particle spatial density at time *t* and point **x** of the beam *i*
- $v_{\rm rel.}$ is the relative speed of the two bunches

Under the assumption of gaussian rigid bunches each one having *N_i* particles:

$$\rho_i(\mathbf{x},t) = \rho_i(\mathbf{x} \mp \beta \mathbf{\hat{z}}t) = N_i \mathcal{G}(\mathbf{x}; \mu = \pm \beta \mathbf{\hat{z}t}; \sigma_i)$$

The density superposition integral can be evaluated algebraically. For head on collisions:

$$\mathcal{L} = f_c rac{N_1 N_2}{2\pi \Sigma_x \Sigma_y}$$
 $\Sigma_{x,y} = \sigma_{1x,y} \oplus \sigma_{2x,y};$

N.B.: in this assumption σ is constant (which is not the case in real life)

Recent results on pixel R&D for Layer0

- CMOS DNW MAPS with data push sparsified readout + timestamp tested with beams:
 - resolution of 14 μm (digital output)
 - hit efficiency up to 92 %
- HYBRID PIXEL: front-end chip with 50x50 µm pitch & fast readout architecture tested with sensor matrix
 - Optimized for hit rate 100MHz/cm2 on full chip size (~1.3 cm2)
 - VHDL simulation: Effi > 98% @ 60 MHz RDclock
 - Timestamp granularity 0.2-5.0 μs

32x128 pix – 50 μm pitch

perif & spars logic

Next R&D on pixel for Layer0

- Improvements in MAPS performance being pursued with:
 - ► INMAPS CMOS process with quadruple well + high resistivity substrate: higher charge collection efficiency & rad hardness → design of first prototypes ongoing
 - ▶ 3D MAPS with 2 CMOS tiers interconnected:: higher cce efficiency, more complex in-pixel logic, reduce cross-talk → first chips under test, testbeam in Sep. 2011
- Improved readout architecture developed for pixel with Vertical Integration
 - TimeStamp is latched in each pixel when fired & readout is time ordered.
 - Timestamp granularity 100 ns
 - Readout could work in data push mode & triggered mode
 - VHDL results for 100MHz/cm2 hit rate: Effi_triggered=98.2%, Effi_data_push=99.9%
 - New submission of large 3D MAPS and FE chip for Hybrid pixel (2-tiers), with the improved readout architecture, in preparation for mid 2011
- Vertical interconnection of FE chip (2-tiers) with high resistivity pixel matrix (best technology under investigation) will give the best performance: high S/N and radiation hardness, low power and material budget

INFN

Light pixel module support & cooling

- Light support with integrated cooling needed for pixel module: P~2W/cm²
- Carbon Fiber support with microchannel for coolant fluid developed in Pisa:
 - Total support/cooling material = 0.28 % X₀ full module, 0.15% X₀ net module
- Thermo-hydraulic measurements in TFD Lab: results within specs

