FE-I4 chip for ATLAS

Mohsine Menouni, Marseille group on behalf of the ATLAS PIXEL Upgrade FE-I4 collaboration

8th International Meeting on Front-End Electronics 24-27 May 2011, University of Bergamo

Outline

Introduction

Motivations, Specifications and Description of the FEI4 chip

□ The architecture

- The chip overview
- The Digital Readout Functionalities
- The Analog Pixel
- The Digital Pixel

Test results

- Measurements : Threshold, Noise, ...
- Wafers Testing
- Module results
- Irradiation

Conclusion and Perspectives

Motivations

- □ Two applications are foreseen for FE-I4 :
- □ Insertion of the B-Layer (2013)
 - Small radius : 3.3 cm
 - Increase tracking performance
 - The FE-I4 designed to respect :
 - Higher hit occupancy per pixel
 - Higher level of radiations
- Phase 1 or Phase 2
 - New pixel detector planned
 - 2 removable internal layers at radii of about 3.3 10 cm
 - 2-3 fixed outer layers at radii of about 15 25 cm
 - FE-I4 fits requirements for outer layers in terms of hit occupancy and radiation hardness

- Present beam pipe & B-Layer
- 3 barrel layers / 3 end-caps
- end-cap: z± 49.5 / 58 / 65 cm
- barrel: r~ 5.0 / 8.8 / 12.2 cm

FE-I4 main specifications

Pixel size	50 x 250	μm²
Pixel array size	80 x 336	Col x Row
Normal pixel input capacitance range	100-500	fF
Edge pixels input capacitance range	150-700	fF
In-time threshold with 20ns gate (400 fF)	4000	e-
Single channel ENC sigma (400 fF)	<300	e-
Tuned threshold dispersion	<100	e-
Charge resolution (ToT method)	4	bits
Operating temperature range	-40 to +60	°C
Radiation tolerance	300	MRad
DC leakage current tolerance	100	nA
Single serial command input (nominal)	40	Mb/s
Single serial data output (nominal)	160	Mb/s
Output data encoding	8b/10b	_

FE-I4A chip overview

FE-I4 chip overview

- □ The FE-I4 pixel array is organized in Double Columns (DC) like the present detector's FE-I3
- Double Column is divided into 2 × 2 pixel regions
- The readout architecture is very different from the FE-I3:
 - Information data is stored locally in the pixel digital region and moved only if selected by trigger
- Each FE-I4 pixel contains :
 - An independent amplification stage with adjustable shaping
 - A discriminator with independently adjustable threshold
 - Pixel Digital Region (PDR) Shared by 4 pixels
- Sensors are DC coupled to FE-I4 with negative charge collection
- Like FE-I3 electronics, FE-I4 is divided into 2 different operating modes:
 - Data path for data acquisition
 - Command and Configuration

Digital Readout Functionalities

Configuration Mode :

- The FE is initialized to a low current mode
- Global configuration memory is written
- Pixels are configured/tuned using shift registers that address any of the 40 double columns

Run Mode :

- The FE responds to Trigger and Fast commands
- Data is fetched from the double columns via a Read token
- All hits matching the time stamp of the Trigger are read out
- Data is sent to the Data Formatter, encoded and sent out on a 160 Mb/s data link
- System messages and/or errors are encoded together with data

Analog Pixel

- Two-stage Amplifier configuration
 - Optimized for low power, low noise and fast rise time
- □ The second stage Amp2 is AC coupled to the preamplifier
 - Additional gain Cc/Cf2~ 6
 - decoupled from preamplifier DC potential shift caused by leakage
- The main motivation on the 2 stage structure is to provide a High gain
 - More flexibility on the choice of Cf1
 - The charge collection less dependent on the detector capacitor
- Local DACs for tuning feedback current and global threshold
- Charge injection circuitry for testing and characterization
- □ 13 bits for pixel configuration:
 - 4 FDAC: tuning feedback current
 - 5 TDAC: tuning of discriminator threshold
 - 2 Local charge injection circuitry
 - 1 Hit Enable
 - 1 HitBus / IleakMonitor

Preamplifier design

- Regulated telescopic cascode
 - The current flows into the input transistor and not through biasing structure : Low noise
 - nMOS as input transistor (M1)
 - High transconductance
 - High dynamic range for expected positive output signals
 - Triple Well structure avoid substrate noise
 - Source follower stage to drive the capacitance of the Amp2
- Continuous reset provided by M18 biased with a current mirror stage
 - The Feed back current is tuned by a local DAC
 - For high output signals, M18 becomes saturated
 - Linear return to the baseline
 - Time over Threshold : ToT
- Leakage compensation structure
 - Tracks the DC shift between input and output
 - Bandwidth of the M11-M12 pair is limited by C2
 - Insensitive to quick variations (Signal)
- □ The leakage current is monitored by M16-M17

May 25, 2011

Amplifier and discriminator stages

- □ The second stage amplifier (Amp2) uses :
 - pMOS input transistor for large dynamic range
 - Feedback time constant of the amplifier is significantly larger than that of the preamplifier
 - M10 used mainly to set the DC operating point
- Classic 2-stage comparator design
 - The second comparator stage is powered by the digital supply voltage
- □ The global threshold VthGlobal is applied to the input of a source-follower (M18, M19 and M20)
- □ A local voltage offset is added by the threshold tuning DAC (TDAC) :
 - Resistor ladder and the current source M19
- □ M18 adds a Vgs to VthGlobal
 - The drawback is the Vgs variation with the temperature
 - Needs to introduce a compensation circuit

Pixel Digital Region

- □ In the present chip (FEI3) :
 - Each pixel is logically independent inside the DC
 - All hit pixels are shipped to End of Column buffer
 - A hit pixel need to transfer its data to EoC before accepting new hit : Congestion Problem for a high hit rate
- For the FEI4 chip
 - Basic idea is to store the hit locally until L1T
 - Implementation of local buffers is possible because of the smaller feature size (130 nm)
 - Organized on PDR : Pixel Digital Region
- □ A PDR processes the data from 4 pixel discriminator
 - Store locally up to 5 events/hits (different BC)
 - Small/big hit discrimination (3 programmable modes)
 - 2 BC association for small hit
 - 4 bit ToT (small hit, no hit, long hit, 13 x value)
 - Neighbor logic (1 bit)
 - Records up to 16 consecutive triggers (4 bit)
 - Programmable latency max. 257 BC
 - Token type readout

Pixel Layout

- Power distribution Only Vertical No Analog/Digital crossing
- Shield on top Metals
- Digital ground tied to substrate, mixed signal environment BUT digital region placed in "T3" deep n-well

May 25, 2011

Other designed blocks

Clock Generator

- PLL generating 8×, 4×, 2×, and 1× clocks waveforms with 50% duty from the 40 MHz clock
- Command Decoder
 - The command decoder (CMD) is responsible for interpreting the serial commands to control the chip
 - The CMD state machine is triplicated, so that there are actually three distinct copies inside the FE-I4 and all CMD outputs are selected with a majority voting circuit.
- Global Configuration Memory
- Efuse Memory
- Pulse Generator for calibration

May 25, 2011

The Global Configuration Memory

- □ 16 rows by 32 columns
- All inputs and outputs pins are on the top side
- Block dimensions : 900 μm × 360 μm
- □ Each cell is a triplication of a DICE latch

Outline

Introduction

- Motivations, Specifications and Description of the FEI4 chip
- □ The architecture
 - The chip overview
 - The Digital Readout Functionalities
 - The Analog Pixel
 - The Digital Pixel

Test results

- Measurements : Threshold, Noise, ...
- Wafers Testing
- Module results
- Irradiation and SEU

Conclusion, Perspectives and Design changes for FE-I4

Threshold and Noise

- In order to determine the threshold and noise values of the individual pixels, automated threshold scans were performed
- For a fixed threshold, N calibration pulses are applied to the amplifiers
- □ The count rate in the pixels is then recorded as a function of the applied calibration voltage
- This assumes a good DAC linearity
- From the resulting scan curve, the threshold and the RMS noise of each pixel are determined

Threshold and Noise

- □ The threshold value for each pixel is shown for a setting of 4000e-
- □ The threshold dispersion before tuning is 680 e- RMS
- □ After Tuning the threshold dispersion reaches a value of 30 to 50 e- RMS
- □ The RMS noise value is 142 e-

May 25, 2011

Pulse shape and ToT

- □ Small hits might arrive in later BC than big hits due to time walk
- □ In order to reduce the time walk effect
 - A time window of 2 clock cycles is considered
 - Used to associate small hits to big hits
- Small/big hit discrimination is defined by HitDiscConfig bit

Charge measurement

- □ ToT versusFDAC works:
- The tuning works too
- ToT versus the Charge scan works

Wafer testing

□ 16 wafers received

- Testing started in October 2010
- Wafers tested and "fully characterized" at Bonn
 - Testing done with USBpixTest / STctrl
 - Web-based inventory system: http://icwiki.physik.uni-bonn.de/twiki/bin/view/Systems/UsbPix#Inventory
 - Data available on server in Bonn

□ Wafer Test Methodology :

- Record Voltages / Currents (VDDA1, VDDA2, VDDD1, VDDD2)
 - At the power-up
 - With various global configuration + Global Configuration register tests
- Pixel Latch tests (13 latches / pixel) : Defect mapping
- Simple HitOR mapping (inject in fraction of pixels, 21/DC)
- Digital injection : Digital hit map
- Analog injection : Analog hit map
- Threshold scan : Threshold and noise histogram

What is the Yield ?

Based on 9 wafers

- Focus on having "fast" some wafers available (sensors tests, thinning tests...)
- Rather loose criteria so-far
- RED: IC can not be operated
 - High currents
 - Many DCs broken
 - Configuration failing
 - Injection failing, empty maps (analog / digital).
- Yellow: IC with some defects
 - Few DCs broken
 - Bad Pixel Register tests but works
 - High currents but works
 - "Regional" failures (e.g. corners)
 - Very high threshold / noise.
- □ Yield for the 9 wafers : 68%, 78%, 67%, 32%, 70%, 88%, 57%, 65%, 63%...
- □ Global yield : ~65%

Module testing

□ 16 FE-I4 assembled, mostly with planar silicon and some with 3D sensors

- IZM bump-bonding
- 14 of them were tested
- □ 3 modules each irradiated at Karlsruhe (2...3.10¹⁵ n/cm2) and irradiated at Ljubljana (~5.10¹⁵ n/cm2)
- Several modules in test beam at DESY
- □ Lab tests:
 - Noise and threshold tuning are OK
 - First irradiated modules OK (some problems with tuning, under investigation)
- □ Source, cosmics and test beam measurements very successful
 - Data taking works
 - Hit efficiency is high
 - ToT spectrum is as expected
 - ToT code works
 - Timing ~OK

Irradiation

- Irradiated 3 chips on December 4-6, 2010 in Los Alamos
 3 cm diameter beam spot of 800 MeV protons
 Target doses averaged over the whole chip :

 ~6 Mrad
 ~75 Mrad
 - ~200 Mrad
- □ FE-I4A powered, but not configured during irradiation
- □ All three chips survived irradiation
 - Digital and Analog part work well after irradiation
- □ Current reference changes by about 2-3%
 - Centering of trim range is done in the new design (FE-I4B)
- Increase in the leakage current
 - Maximum change at 6 Mrad (Compatible with CERN threshold shift study)
- Threshold dispersion still unchanged
- □ Noise increases by about 20%
- SEU measurements are done now at CERN PS

Effect on the threshold

- Threshold dispersion still unchanged
- Comparable results for the 2 columns variants

May 25, 2011

Effect on the noise

- Noise increases by about 20% after irradiation
- Similar noise distribution for nominal DCs and CFIsVncap variants DCs
- Noise increases by about 20% but no systematic effects observed

May 25, 2011

Conclusion

• FE-I4C Design for the internal layers

FE-I4A Collaboration

- □ Collaborate remotely using Cliosoft.com platform.
- Repository hosted at LBNL and mirrored at all other sites
- Participating institutes :
 - Bonn : David Arutinov, Malte Backhaus, Marlon Barbero, Tomasz Hemperek, Laura Gonella, Michael Karagounis, Hans Krueger, Andre Kruth
 - Genova: Roberto Beccherle, Giovanni Darbo
 - LBNL: Lea Caminada, Sourabh Dube, Julien Fleury (LAL), Dario Gnani, Maurice Garcia-Sciveres, Frank Jensen, Yunpeng Lu (IHEP), Abderrezak Mekkaoui
 - CPPM: Patrick Breugnon, Denis Fougeron, Fabrice Gensolen, Mohsine Menouni, Sasha Rozanov
 - NiKHEF: Vladimir Gromov, Ruud Kluit, Jan David Schipper, Vladimir Zivkovic
 - Goettingen: Joern Grosse-Knetter, Jens Weingarten

505-6.28,p5: ATFIX/ATFIX @ /home/ś/users/d/dgnani/ICdesign/ATFIX/cliosoft/design_wa			Seamless Inter	Seamless Integration	
Ble Project Modify Attra Select Tree Bevision Help			o cuante o o nice;		
ierver: ATPIX Project: ATPIX Work Area: /home/4lusers/ahlgnan/hOlesign/ATPIX/bisseft/bissign_wa e Selected: 0 e Olecied Out: 3			Cadence	C Manage Cadence IC libraries directly from the	
lienanchy Locked	CI By CI Time Change Summary	Create	Platfo	Platform Cadence IC Platform. Manage cell views	
⊢ <u>p</u> . Ø ¥ ø	dgnani 2009/10/12 18:14 Autonatically checking in directory			without worrying about the physical files that	
🖷 💼 cda	n21 2009/08/19 13:28 Autonatically checking in directory	OIK OUT		make up these design units.	
digital # 2	themper 2009/10/13 12:36 Automatically checking in directory	Oik In			
	agnani 2006/05/05/03 10:31 Hutomatically checking in directory		Synops	Manage Open Access libraries directly from	
FETA & BOACS	akarang 2009/10/14 02:17	Discard	Custom Design	or Custom Decimor	
B-FEI4_A_DLKGEN # 4	akruth 2009/10/16 05:32	Tag	Custom Design	er Custom Designer.	
B-C FEI4_A_CND	beccher 2009/10/23 03:16 Automatically checking in directory		Montor III	Manage Menterle UDI, Designer Carico	
FEI4_A_DNFGMEM	mempuni 2009/10/21 11:48	Diff	Mentor H	Manage Mentor's HDL Designer Series	
FEI4_A_CREF	vgrowov 2009/10/29 10:22	History	Design	er libraries directly from Mentor's Design	
FEI4_ALDACS	anekkao 2009/10/22 17:14			Browser, Manage logical design units without	
FEI4_A_DCDC	dgnani 2009/10/01 15:20 autocheckin	Sel Lst		worning about the aburical files	
FEI4_A_DOC	thenper 2009/10/13 06:47 Autonatically checking in directory	Fdt		won ying about the physical lifes.	
	dghani 2009/09/22 09:00		Couine Coft Lab	or Design Browner ellows enough provinction of	
	vladiz 2009/10/22 18:41	Chat	SpringSoft Law	er Design browser allows easy havigation of	
FEI4 A EDDCL	denani 2009/09/22 09:06	Undate		libraries and provides convenient access to	
FEI4_A_FEND	anekkao 2009/10/27 17:48			DM features from Laker.	
🕸 📲 FEI4_A_10B 🗲 💋 🛛 🔪	nkarago 2009/10/27 11:11				
B-BEI4_A_DAMP	jlfleur 2009/09/30 13:52		CA	PI A complete C programming interface to	
FEI4_R_POR	themper 2009/10/15 12:54			integrate any in-bound tools with the SOR	
FEI4_ALPULSGEN	jlfleur 2009/10/21 16:49 autocheckin			integrate any influse tools with the 303	
	anekkad 2009/09/21 12:48			data collaboration platform. Readily available	
	mkarago 2009/10/2/ 11:14			multi-site DM support in all tools.	
FETA & TEMPSENS CADE	anarala 2009/10/28 11:50		1		
FEI4_A_TOPO	anekkag 2009/08/28 10:36				
B-BFEI4_ALVREF Ø	dgnani 2009/10/20 23:43 Automatically checking in directory				
- FEI4_R_topSch 🖉	dgmani 2009/10/29 18:03				
E testtechIBM2_6	akarago 2009/10/21 13:35				
FEI4CommonExtraVias.tf	dgnan1 2009/10/16 08:01 comment out vialef custom vias				
Project. "Checked out	OCA V9/10/29 15:20 add libs				
Ballet and	AUMAN 10103/05/05 10:39 Automatically checking in directory				
Bhiston out					
-Bana los					
			1		