

DCDC conversion ASIC developments

S.Michelis, F.Faccio, G.Blanchot, C.Fuentes, B.Allongue CERN – PH/ESE

stefano.michelis@cern.ch

http://cern.ch/project-dcdc

Conceptual representation of the power distribution system typically used in the LHC experiments

Power loss in cables: $P_{Loss}=R_{cable}I^2$

The electronics load (the FE boards) needs power at a precise voltage PLoad=VLoadILoad

 $\begin{array}{c} \mathsf{P}_{in}=\mathsf{V}_{in}\mathsf{I}_{cable} & \longrightarrow & \mathsf{DC/DC} \\ \hline & \mathsf{converter} & \longrightarrow & \mathsf{P}_{out}=\mathsf{V}_{Load}\mathsf{I}_{Load} \end{array}$

if P_{in}=P_{out} and if V_{in}>V_{Load}, I_{cable}<I_{Load} the DCDC needs to function in the radiation and magnetic field of the experiments

Qualification required for radiation effects: TID, displacement damage, SEEs

Electrical specs

Input voltage	10-12V
Output voltage	1.2-3.3V
Output current	up to 3A*
Efficiency	>80% (for V _{out} =2.5V)
Conducted and radiated noise compatible with	

installation in close proximity to FE electronics and detectors

* We will know the real output current limit soon, with measurements of a mature ASIC in a realistic configuration (cooling)

Mechanical specs

Small size (footprint, height)

Small contribution to material budget

Connectable to cooling system

Environmental specs

TID tolerance	250 Mrad
Displacement damage	2.5 · 10 ¹⁵ n/cm² (1MeV equivalent)
SEE	Absence of destructive SEEs and Vout transients when tested with heavy ions up to an LET of 30 MeVcm ² mg ⁻¹
Magnetic field	4 T
Temperature of cooling pad	-30 to +10 °C

DC/DC ASIC design

Radiation tolerance: Technology choice HV transistors (10V) LV transistors (control circuit) Layout and design technique (ELT, triplications)

2007- 2009	pre-selection of CMOS technologies with HV extension
2008- 2010	design of prototypes in the two pre- selected technologies (0.25 and 0.35um)
2010	SEE tests on the two technologies led to selection of 0.35um

Design for high efficiency:

efficiency= $\frac{P_{out}}{D_{in}}$

Losses in a converter

Switching losses α f Vds lds C α f Vds lds WL

H-ESE-ME, CERN, FEE Workshop, Bergamo 2011

Ideal behavior

Fixed delay dead time Vin High Side $\wedge \wedge \wedge \wedge$ Vout C_{out} Vin Phase Ground High Low Side High Low Side Side Side on on on on > ZVS turn "on" Low Side

Vin-2.1V comparator

Vin-2.1V comparator

Vin-2.1V comparator

Gate Protection

Drain Protection

AMIS4

Some features integrated in the prototype:

- Bandgap
- 4 linear regulators: Pre-Reg, Analog, Digital and Driver
- Handling of the dead time with adaptive logic
- Triplication and logic against SEU
- Improved power transistors' design to reduce TID effects
- Enablers
 - Complete circuit
 - Dimension of the power transistors

External components needed:

- Capacitor for Linear regulator
- Capacitor for Bootstrap

Linear regulators

Linear regulator

An embedded state machine handles the soft start procedure and the fault signals from the protection circuitry:

- Over-Current: if High Side current over 5.8A for 32 consecutive times
- Our Under-Voltage: control on Vin if lower than a threshold
- Ø Over-Temperature: if T_{chip}>115°C
- Disable Buck: from external pin

Example prototype of a full DCDC

28.5mm 13.5mm "optimized" PCB Converter ASIC Covering shield (commercial or Custom inductor custom rad-tol)

Conclusions

OCDC converters are required for the upgrade of the LHC experiments

- They enable power distribution at higher voltage, decreasing the current on the cables.
- The development of full DCDC converters required a technology with HV extension (with good tolerance to radiation)
- A fully integrated buck converter has been designed in this technology and design hints has been presented