

ADVANCED CMOS-BASED PIXEL SENSORS

PIET DE MOOR

OUTLINE

- Introduction: (Si) imagers
- design
- technology: CMOS + ...

- roadmap
- examples

conclusion

IMEC 2011 PIET DE MOOR

INTRODUCTION: IMAGER ?

- = detector, sensor for
- electromagnetic radiation (photons)
- particles
- visible spectrum:
 - consumer applications
- CCD 'vanilla' CMOS CIS
- other: high-end/scientific
- CMOS + ...

SEMICONDUCTOR IMAGER BASICS

- detection in semiconductors:
- photon absorption causes creation of electron-hole pair(s)
 - photon energy must be larger than bandgap
- diode collects charges

- Si has a combination of unique properties:
- right bandgap to detect visible light
- absorption of visible light in a few micron thickness
- the best/most practical semiconductor material for integrated circuits

IMAGER PIXEL

- passive pixel:
- single photodiode

- active pixel:
- photodiode
- connected to pixel electronics:
 - source follower (SF): '3T pixel'
 - CTIA
 - additional analog/digital electronics

IMAGER PIXEL

- active pixel: 4 T(transistor) pixel:
- = 3T pixel connected to a floating diffusion node (FD)
- extra transfer gate (Tx) between photodiode and FD node
- 'pinned' photodiode
- advantages:
- lower dark (leakage) current
- lower noise

6

SI BASED IMAGER BASICS

- readout of many pixels requires microelectronics fabrication technology:
- dedicated imager technology: Charge Coupled Device (CCD) – Nobel Prize 2009
 - excellent optical properties

- advantages of CMOS scaling:
- integration of electronics, low power, ...

IMAGER PARAMETERS: FILL FACTOR

- = relative area of the pixel that is sensitive
- reasons:
 - shielding/reflection of light/paritcles by metal interconnects
 - size of the diode vs. pixel transistors

IMAGER PARAMETERS: QUANTUM EFFICIENCY (QE)

- Intrinsic sensitivity
- = number of collected charges per incoming photon/particle
- particle/energy/wavelength dependent
- typical numbers :
- technology dependent

imec

© IMEC 2011 PIET DE MOOR Y. Bai et al., SPIE proceedings Vol. 7021

ABSORPTION

- penetration depth is dependent on:
- wavelength (photons)
- particle type & energy
- examples:

	Type of radiation	Penetration depth	Challenge ?
	visible light, soft X-rays	few micron	easy
	near UV, Iow E electrons, molecules	few nanometers	difficult: surface passivation
	high energy photons, particles	(much) larger than 10 um	difficult: large collection depth
่เท	ICC © IMEC 2011 PIET DE MOOR	IMEC CONFIDENTIAL	10

CHARGE COLLECTION

- requires low dopant (= high resistive) Si part:
 - epi layer on bulk (highly doped) Si
 - high resistivity substrates
- mechanism:
- electric field/depletion: directional
- diffusion: isotrope

IMAGER PARAMETERS: CROSS-TALK

- Ight/particle incoming in a pixel, charges collected in other pixel
- reasons:
- light scattering (optical cross-talk) and/or charge diffusion

impact:

- loss of effective resolution
- quantitative:
- Modulation Transfer Function: MTF

imec

OUTLINE

introduction: (Si) imagers

- design
- technology: CMOS + ...

- roadmap
- examples

conclusion

IMEC 2011 PIET DE MOOR

DESIGN COMPETENCES

- 'optical':
- reflection/transmission/absorption
- electrical:
- electric field
- charge transport
- depletion

process:

- implantation and anneal conditions
- tools:
- Sentaurus, Medici, Tsuprem, Matlab

200 MM FLEXIBLE 0.13 UM PLATFORM

pixel

- pinned Photodiode: option (in development)
- CCD in CMOS option (in development)
- dual gate process, 3.3V/1.2V operation
- analog & I/O
- MIM capacitor
- high precision resistor
- digital:

- low Operating Power (LOP) optimized transistor
- lowVdd operation
- outsourcing of color filters & micro lenses

+ flexibility to non-standard processing

imec

© IMEC 2011

FLEXIBLE 0.13 UM PLATFORM:SPECIAL SUBSTRATESIower dopin

- epitaxial layers:
 - thick:
 - up to 50 um demonstrated for enhanced red response
- graded dopant concentration
 - for directional carrier transport
 - = lower cross-talk
- high resistivity substrates:
- both n and p-type
- resistivity > IkOhm.cm
- solution for chucking in imec fab

© IMEC 2011

IMEC CONFIDENTIAL

FLEXIBLE 0.13 UM PLATFORM: STITCHING

- stitching allows large area imagers:
 - up to I imager per wafer
- different imager sizes on one wafer demonstrated:
 - 12x12 mm², 25x25 mm² and 50x50 mm²
- application: e.g. large area X-ray

FLEXIBLE 0.13 UM PLATFORM: TRENCHES FOR ZERO CROSS-TALK

- poly-Si doped trenches separating pixels:
 - advantage: no cross-talk
- demonstrated using laser point source
- impact on (blue) QE

FLEXIBLE 0.13 UM PLATFORM: FRONTSIDE ILLUMINATED IMAGERS

- Iimited fill factor:
 - caused by metal interconnects
 - enhancements using micro-lenses
- Iimited QE:

standard CMOS

process

imec

© IMEC 2011

FLEXIBLE 0.13 UM PLATFORM: THINNING

- solution:
- backside thinning
- technology:
 - course + fine grinding
- challenges:
 - wafer handling:
 - use of carrier wafers and temporary wafer (de-)bonding technology
 - thinning damage, impact on devices:
 - damage removal
 - backside passivation: implant + laser annealing

imec

© IMEC 2011

FLEXIBLE 0.13 UM PLATFORM: BACKSIDE ILLUMINATED IMAGERS

- 100% fill factor: no metal interconnects
- maximal QE:
- no BEOL dielectric absorption
- broader wavelength range (i.e. in near UV)
- enables the detection of particles with very shallow penetration in Si:
 - low energy electrons
- enables very thin detectors with minimal particle scattering:
 - tracking detectors

© IMEC 2011

imec

IMEC CONFIDENTIAL

FLEXIBLE 0.13 UM PLATFORM: HIGH DENSITY BUMPING

- In and CuSn microbumps:
 - post-process at wafer level for both sides:
 - under-bump metallization (UBM) & patterning
 - solder deposition & patterning
- smallest pitch:
 - 20 um
 - 10 um under development

ADVANCED ASSEMBLY AND PACKAGING

- dicing
- wire bonding
- die attach
- bump placement:
- Au stud ball bumping
- solder bumping
- flip-chip:
- high density bump assembly
- glass capping
- underfill
- pick and place
- PCB/ceramic boards

© IMEC 2011

imec

OUTLINE

- introduction: (Si) imagers
- design
- technology: CMOS + ...

- roadmap
- examples

conclusion

IMEC 2011 PIET DE MOOR

3D INTEGRATED IMAGERS ROADMAP

3D INTEGRATED IMAGERS ROADMAP

IMEC 0.13 UM CMOS CMOS IMAGERS

- CIS test chip:
- 4T pixel with pinned photodiode
- shared FD node
- yield optimization
- eCCD:
- CCD pixel structure embedded in CMOS
- best of 2 worlds:
 - CCD operation of pixels, in charge domain
 - flexible CMOS read-out electronics

3D INTEGRATED IMAGERS ROADMAP

HYBRID BACKSIDE ILLUMINATED IMAGER: 'HYBRID APS'

- specifications:
 - 22.5 um pitch
 - stitched design: 512x512, 1024x1024
 - QE> 80% from 400 850 nm
 - thick epi: final thickness ~ 12-35 um
- passive photodiode array (including trenches for X-talk reduction, graded epi) designed and fabricated @ imec
- ROIC designed by FillFactory/Cypress, fabricated in CMOS 0.35um commercial foundry process
- backside thinning, backside passivation, hybridisation @ imec

HYBRID BACKSIDE ILLUMINATED IMAGER: LOW CROSS-TALK WITH GRADED EPI PROFILE

- decrease in cross-talk demonstrated on BSI hybrid imagers using optimized graded epi and reduced thickness
- total charge spreading to neighbors using (laser) point source:

HYBRID BACKSIDE ILLUMINATED IMAGER: UNIFORMITY & DEFECT PIXELS

PRNU-HF (%)

- pixel response nonuniformity (PRNU):
- high frequency/ short distance
- < 2%
- very uniform process
- defect pixels:
- = pixel response outside +/- 20 % average response
- < 0.5 %

imec

© IMEC 2011 PIET DE MOOR

PERIPHERAL 3D INTEGRATED IMAGERS: TILING FOR LARGE AREA IMAGERS

- stitching: yield problem, area limit
- 2-side/3-side buttable/tiling: area limit

- solution = 4-side buttable using 3D integration
 - minimal non-sensitive area thanks to vertical interconnection

PERIPHERAL 3D INTEGRATED IMAGERS: RELAXD: LARGE AREA X-RAY DETECTION

- 4-side buttability using TSV at bondpad level
- edgeless imagers:
- advanced singulation close to active pixels:
 - dicing by grinding
 - side wall passivation
- status:
 - demonstrators built
- functionality test ongoing

pixel

PERIPHERAL 3D INTEGRATED IMAGERS: RELAXD: LARGE AREA X-RAY DETECTION

imec

© IMEC 2011

imec

FLEXIBLE IMAGERS

dielectric layer

thinned imager

- curved imager concept:
 - embedding of a thinned imager in a flexible foil
 - thin Si (~ 20 um)
- application examples:
- non-planar focal plane, allowing easier/enhanced optics
- on/in the body radiation monitoring for cancer therapy
- tracking detectors for high energy particles
- example of IMEC techno:
- functional microcontroller in flex substrate

© IMEC 2011

IMEC CONFIDENTIAL

CONCLUSION

- many competences under one roof:
- flexible 0.13 um CMOS
- (pixel) design know-how
- qualification know-how
- enable state-of-the art image sensors:
- R&D projects
- DoD (Development-on-Demand)
- LVP (Low Volume Production)

IMEC IMAGER PARTNERS

IMEC © IMEC 2011

IMEC CONFIDENTIAL

