

LDG Update

- LDG role and composition
- Accelerator R&D progress
- Sustainability assessment
- Community meetings
- LDG: forum / representative body / working group of major labs
- Coming years will bring challenge and opportunities
 - European Strategy update process first steps in 2024 LDG has a 'structural' role
 - Major challenges to operations and delivery for all major labs
 - Positioning / delivery for next generation of large science infrastructures
 - Including, but not limited to, the next particle colliders
 - Some of these infrastructures are becoming 'global projects'
 - Practical support for the detector and accelerator R&D programmes

LDG Remit

- Remit approved by CERN Council
 - Facilitate informal dialogue among the Directors of the LNLs and CERN
 - Provide direct input to the European Strategy for Particle Physics
 - Liaise with the European Commission and national funding agencies, research institutes and universities, ensuring that LNLs speak with a single voice
 - Maximise the regional and national benefits of investment in fundamental research and in CERN
 - Keep abreast of the activities ... being undertaken in laboratories outside CERN's Member States, and of other coordinating groups in particle physics and related fields, and foster dialogue with them
 - Draw up and maintain a prioritised accelerator R&D roadmap towards future large-scale facilities for particle physics
 - Coordinate the accelerator R&D activities on the roadmap, with the aim of strengthening cooperation and ensuring effective use of complementary capabilities

LDG Composition

Laboratory representatives

- S. Bentvelsen (NIKHEF)
- F. Bossi (LNF)
- J. Clarke (DL)
- N. Colino (CIEMAT)
- F. Gianotti (CERN)
- B. Heinemann (DESY)
- D. Newbold (RAL Chair)
- E. Previtali (LNGS)
- F. Sabatie (IRFU)
- M. Seidel (PSI)
- A. Stocchi (IJCLab)

Close cooperation between LDG and ECFA continues

Standing observers

- K. Jakobs (ECFA Chair)
 - > -> P. Sphicas (ECFA Chair-Elect)
- M. Lamont (CERN Directorate)
- J. Mnich (CERN Directorate)
- H. Montgomery (SPC Chair)

Secretary

- E. Tsemelis (CERN)
- Scientific secretary... TBA

Extended LDG members

- G. Bisoffi + P. Macintosh (RF)
- W. Leemans + R. Patahill (Plasma)
- S. Stapnes + D. Schulte (Muons)
- J. D'Hondt + M. Klein (ERL)
- P. Vedrine (HFM)

Accelerator R&D Coordination

- Vehicle for cooperative, coordinated, focussed R&D towards the future machines
 - Structure now mature, regular LDG / SPC review cycle in operation
 - Next review and report to Council in November / December 2023

HFM Project

HFM Project

Comprehensive work plan

- HLT & LTS different maturity today
- Conductors, cables, and prototypes
- Controls, modelling, and facilities
- Dipoles and other applications

Development of Novel Magnet Protection Method

E-CLIQ: External Coil Coupled Loss Induced Quench

E-CLIQ in development for an SMC magnet demonstrator

- Able to generate local dB/dt of > 100 T/s
- Compact envelope, width of a Nb₃Sn cable

Design tested to withstand loads of over 200 MPa √

Modeling tools further matured

RF Structures

RF Implementation Panel		G. Bisoffi INFN-I, P. McIntosh STFC-UK	
WG1	Bulk Nb	M. Baylac CNRS-F, C. Madec CEA-F, L. Monaco INFN-I	
WG2	Thin films C. Antoine CEA-F, O. Malyshev STFC-UK		
WG3	Couplers	F. Gerick CERN-CH, E. Montesinos CERN-CH, A. Neumann HZB-D	
WG4	NC High gradient W. Wünsch CERN-CH, D. Alesini INFN-I		
WG5	RF Power sources	er sources I. Syratchev CERN-CH, G. Burt ULAN-UK, M. Jensen ESS-SE	
WG6	LLRF, AI, ML	Z. Geng PSI-CH, W. Cichalewski U-Lodz-P	

RF Structures

WG1: Niobium cavity R&D goals & direction

Most **R&D** benefits several future PP colliders (FCC, MC, ILC, ERLC)

HINTS FOR THE FUNDING AGENCIES

- 1. More funding & HR for treatments:
- ✓ FE studies, cost optimisation, industrial manufacture.
- 2. Contributions from other disciplines:
- ✓ Robotics cavity prep. in cleanrooms.
- ✓ Chemistry Plasma proc. for FE recovery.
- 3. Maintain/improve infrastructures:
- ✓ ISO4 **cleanrooms** for preparation & assembly.
- ✓ Vertical low power test stand

RF Structures

WG2: Thin-film cavities

Labs: CEA-Saclay, CERN, HZB, HZDR, INFN, STFC, USI, Hamburg U. (DESY), (I.FAST-WP) JLAB, KeK and FNAL

- Tightly-knit network, very well connected worldwide.
- Small teams, limited budgets, technical support and access to RF tests.

HINTS FOR THE FUNDING AGENCIES

To facilitate expedited multi-cell coated cavity verification, 1.3 GHz and lower

Intensify R&D:

- ✓ more SC materials to explore, various techniques, targets
- ✓ surface/material characterization and SC property measurements.
- ✓ Cu-cavity production and their polishing.
- ✓ laser and flash-lamp **annealing** on Cu samples/cavities.

More funds-people/higher priority for:

- ✓ facilities (people, liq-He, electricity, ...); for many cells, various frequencies
- √ furnace + new ALD coating set-up.
- ✓ access to clean rooms.
- Have more test installations available (so far some at CERN, HZB and DESY, INFN; in preparation at STFC).
- Have more sample characterization stations available.

	Staff	PhD students	Funds/yr (k€)
Present	30	9	870
Ideal	60	18	2100

Energy-Recovery Linacs

The principle of Energy Recovery Linacs

Energy-Recovery Linacs

ERL to enable high-power beams that would otherwise require one or more nuclear power plants

Future ERL-based Colliders

H, HH, ep/eA, muons, ...

R&D Roadmap

bERLinPro & **PERLE**

essential accelerator R&D labs with ambitions overlapping with those of the particle physics community

towards high energy & high power

Energy Recovery demonstrated

great achievements on all aspects and large research infrastructures based on Energy Recovery systems have been operated successfully

Energy Recovery Linacs (ERL): reaching higher luminosities with less power requirements

ERL: iSAS

iSAS is now an approved Horizon Europe project

Grant Agreement has been signed this week - project starts on March 1, 2024

Spread over 4 years: ~1000 person-months of researchers and ~12.6M EUR (of which 5M EUR was requested to Horizon Europe)

12

+ industrial companies: ACS Accelerators and Cryogenic Systems (France), RI Research Instruments GmbH (Germany), Cryoelectra GmbH (Germany), TFE Thin Film equipment srl (Italy), Zanon Research (Italy), EuclidTechLab (USA)

ENABLE EFFICIENT ENERGY RECOVERY & FURTHER REDUCE POWER REQUIREMENTS

Dave.Newbold@stfc.ac.uk

ERL:Applications

Potential impact of ERL technology

demonstrate multi-turn high-power ERL

2020'ies

high-power ERL demonstrated

enables the ultimate upgrade of the LHC program

2030'ies

ERL application electron cooling

2030-2040'ies

high-power ERL e- beam in collision (ep/eA @ LHC program)

2070'ies

ERL FCC-ehunzenan

2040-2050'ies

ERL for H/HH Factories

100 KM LONG

100 KM LONG

100 KM LONG

high-power ERL for e+e- Higgs Factories (Z/W/H/top/HH program)

increases the performance of the next major colliders

Muons

Collaboration goals

- Develop muon collider concept
 - Focus on 10 TeV (integrated luminosity 10 ab⁻¹)
 - Consider potential initial stage (maybe 3 TeV, integrated luminosity 1 ab⁻¹)
- By 2026
 - Assessment report
 - R&D plan toward collider
- Currently writing Interim Report, as promised, ready March 2024
 - Provided tentative parameter document

Collaboration is growing

- 68 signatories, several from US, other partners
- EU co-funded Design Study is now fully active
- Strong US interest: community ask in P5: ramping up to 50 FTE for accelerator, 30 FTE for the detector

Technical progress

- Make adequate progress on the subjects we are working on
- Progress resource-limited, new collaborators important (in particular larger US contribution)

Muons

Muons

Implementation Considerations

Reviewing timeline (still evolving)

- Uncertainties from physics case (e.g. HL-LHC), budget profile etc.
- · On the critical path
 - Muon cooling technologies and integration
 - Magnet technology
 - Detector technologies
- Initial stage to start physics before 2050 appears possible
 - To be confirmed before next ESPPU

Potential site next to CERN identified

- Mitigates neutrino flux
 - · Points toward mediterranean and uninhabited area in Jura
- Detailed studies required (280 m deep)
- Will look for other sites, looks promising
- FNAL and other sites will also be studied
 - FNAL takes test facility into account in their ACE plans

Neutrino flux mitigation

Magnets

Has been reviewed by expert panel

Design and mode

Experts anticipate technology to be **mature in O(15 years)**:

- HTS solenoids in muon production target, 6D cooling and final cooling
 - HTS tape can be applied more easily in solenoids
 - Strong synergy with society, e.g. fusion reactors
- Nb₃Sn 11 T magnets for collider ring (or HTS if available)

For second stage can use HTS or hybrid collider ring magnets

Plasma

Outcome of the HALHF Collaboration Meeting held at DESY

Hybrid meeting with the HALHF community in Hamburg and online (56 participants, 33 people on site)

Goals of the meeting were:

- Update on current status of the HALHF concept
- Plan for staging demo
- Assess impact on detector design
- Assess challenges in
 - Conventional accelerator systems
 - Plasma systems
- Make the HALHF design realistic and realizable

HALHF:

- An end-to-end preliminary collider design presented by Brian Foster, Richard D'Arcy and Carl Lindstrøm
- Asymmetric energy e+e- collider design with a 500 GeV electron arm and a 31 GeV positron arm.
- Plasma-accelerator driven electron arm and a positron-arm based on conventional linac

B. Foster *et al.*, *New J. Phys.* **25**, 093037 (**2023**) https://iopscience.iop.org/article/10.1088/1367-2630/acf395 https://arxiv.org/pdf/2303.10150.pdf

Plasma

Outcome of the discussions

How to continue and push HALHF – prospective funding sources promising (ERC, STFC, Oxford)

- Start-to-end simulations: high fidelity, full physics modeling
 - Include non-linear QED effects in extreme regime
- Need a plan for staging demonstrator:
 - "Staged approach":
 - What does a multi-stage demonstrator look like?
 - Are there current facilities that can be used without major (>1M€) investment needed?
 - What investment is needed for a full-fledged demonstrator?
- Develop base line parameters for drive linac and collaborate with drive linac experts
- Work out parameters for ILC-like positron source using spent e- beam
- Detector concept development needs to continue
- Produce a "pre-CDR" in the next few months a HALHF scheme in which all conventional parts are specified and believably implementable, all PWFA parts clearly defined and coherent machine described.

Intermediate milestones:

- Collaboration meeting ~ 6 months from now. Venue:
 Oslo (tbc)
- "Erice" expert meeting to draft "pre-CDR" 03.-08.10.2024 (tbc) limited to ~30 experts
- Collaboration meeting end of 2024 / early 2025 to "sign off" pre-CDR and launch "funded" R&D phase.

Update Plasma Accelerators | HALHF Collaboration Meeting | 16 November 2023 | Leemans & Pattathil

Plasma

Strategies of PWFA facilities align with pre-CDR work

Plan covers major plasma accelerator challenges – need extra resources for coordination

Sustainability

Reported annual workplace emissions, per researcher

2019 data, save MPIA (2018), and ETHZ business travel (average 2016-2018).

energy inputs required if they had the same conversion losses as fossil fuels

Options:

- 1) Expand CO2-free energies
- → factor ~12 in 7 years required;
- 2) Increase energy efficiency
- → factor ~2 in 7 years
- e.g. Electrification of engines (factor
- 3-5 vs. combustion engine)
- e.g. LEDs for lighting (factor 10 vs. light bulb)
- 3) Save energy
- → factor ~2 in 7 years
- e.g.Less travel: online conferences, holidays nearby
- e.g. Fewer consumer items, more repair options
- e.g. Energy priority for essential things

For options 2)+3) an increase in renewables of a factor of 3 needed to cover increase from naive extrapolation is needed

account

to the

ENERGY/SECOND

-28000 GW

26000 GW

CAP+ report

https://sustainable-

Sustainability

- LDG Working Group on "Sustainability assessment of accelerators", to define and identify:
 - Key indicators to be reported
 - ▶ Peak / instantaneous lifetime- and performance specific (per luminosity) energy consumption
 - ▶ Lifetime and specific Global Warming Potential (GWP) including construction
 - Include margins of uncertainty and possibly an assessment of the potential for improvement
 - Methodology and assumptions allowing a transparent and objective determination and comparison of these metrics across the proposals.
 - The maturity of a proposal should be determined, for example early concept phase, CDR, TDR or TRL levels
 - Other high level environmental impacts that may be relevant for all or specific collider proposals.
 - Application to accelerators of European best practices for defining GWP
- Convenor to be appointed at the upcoming LDG meeting
 - Will work closely with and draw upon internal sustainability projects of individual labs

Sustainability

Other (more technical) objectives:

- Treatment of future carbon intensity of electricity and materials: what scenarios should be assumed?
- Assessing the potential for dynamic operation of the various facilities, i.e. the ability to adapt to a fluctuating energy supply
- Treatment of regional vs global parameters: How to treat differences e.g. in carbon intensity between different host countries?
- Carbon intensity / lifecycle inventory (LCI) studies of materials specific to accelerator projects: high-purity niobium, permanent magnet alloys etc
- Use of open-source LCI databases and Lifecycle Assessment (LCA) tools to ease/automate the assessment for future research infrastructures
- Extending the recommendations for colliders to other scientific endeavours related to HEP
- How HEP labs can share/build up expertise jointly
- Connects directly to R&D work on sustainable technologies

Community Engagement

- Two 'new' events held in Frascati this summer
 - First open meeting of the LDG, with involvement of international labs
 - ▶ Nineteen major laboratories involved on three continents can improve!
 - https://agenda.infn.it/event/35700/
 - Community report on accelerator roadmap
 - ▶ Intended to bring HEP community and accelerator R&D experts together
 - https://agenda.infn.it/event/35579/
 - Limited attendance by the HEP community
- Engagement is crucial
 - Scope and scale of the acceleartor R&D is growing
 - This is the crucial supporting activity for long-term new machines
 - With obvious relevance to the performance and sustainability of shorter-term machines
 - HEP community involvement makes sure that the goals of the European Strategy are kept 'front and centre'
- Next open LDG meeting / workshop please plan to attend!
 - Brookhaven, June 6-7, 2024 (FCC workshop in US is following week)
 - Great opportunity to reflect on alignment of P5 priorities and European Strategy
 - At the start of the next phase of the US programme, and just as we enter the update process

Additional Material

