REPORT ON THE ECFA e^+e^- WORKSHOP IN PAESTUM

- A glimpse of what you missed
- . why you should come to the

[Cpkoppenburg.bsky.social] [Cpkoppenburg [patrick.koppenburg@nikhef.nl

REPORT ON THE ECFA e^+e^- Workshop in Paestum

- Second in series, after the Hamburg 2022 workshop [indico]
- 138 registered participants
 - Hard to compare with Hamburg, which had an online option
- The workshop was preceded by a software tutorial [key4hep]

ECFA e⁺e⁻ HIGGS/TOP/EW FACTORY STUDY

Patrick Koppenburg

ECFA e^+e^- Higgs/Top/EW Factory Study

WG1 physics performance

Coordinators: Jorge de Blas, Patrick Koppenburg, Jenny List, Fabio Maltoni

GLOBAL INTERPRETATIONS (GLOB) Conveners:

Jorge de Blas, Sven Heinemeyer, Alexander Grohsjean,
Junping Tian, Marcel Vos

Precision (PREC): Conveners: Ayres Freitas, Paolo Azzurri, Adrian Irles, Andreas Meyer

HIGGS/TOP/EW: Conveners: Chris Hays, Karsten Köneke, Fabio Maltoni

FLAVOUR (FLAV): Conveners: David Marzocca, Stéphane Monteil, Pablo Goldenzweig

SEARCHES (SRCH): Conveners: Roberto Franceschini, Rebeca Gonzalez Suarez, Filip Zarnecki

WG2 Physics Analysis Methods

Conveners: Patrizia Azzi, Fulvio Piccinini, Dirk Zerwas

WG3 Detector R&D

Conveners: Mary Cruz Fouz, Giovanni Marchiori, Felix Sefkow

ECFA e^+e^- WG1 Focus Topics

	Topic	lead group	 Title				
							
	HtoSS	HTE	$e^+e^- o Z$ h: h $ o sar s$				
	ZHang	HTE (GLOB)	ZH angular distributions and CP studies				
	Hself	GLOB	Higgs self-coupling				
	Wmass	PREC	Mass and width of the W boson				
	WWdiff	GLOB	Full studies of WW and $e u W$	Soon to be			
	TTthres	GLOB (HTE)	Top threshold	described in			
	LUMI	PREC	Precision luminosity measurement	further detail in an			
	EXscalar	SRCH	New exotic scalars	arXiv preprint:			
	LLPs	SRCH	Long-lived particles	contact conveners			
10	EXtt	SRCH	Exotic top decays				
11	CKMWW	FLAV	CKM matrix elements from W decays	to contribute			
12	BKtautau	FLAV	$B^0 o K^{0*} au^+ au^-$				
13	TwoF	HTE	EW precision: 2-fermion final states ($\sqrt{s}=M_Z$ and beyond)				
14	BCfrag	FLAV (PREC)	Heavy quark fragmentation and hadronisation				
15	Gsplit	PREC (FLAV)	Gluon splitting and quark-gluon separation				

ECFA e^+e^- WG1 Focus Topics

			relevant \sqrt{s}				
	Topic	lead group	91 GeV	161 GeV	240/250 GeV	350-380 GeV	$\geq 500 ext{GeV}$
	HtoSS	HTE					
	ZHang	HTE (GLOB)					
	Hself	GLOB					
	Wmass	PREC					
	WWdiff	GLOB					
	TTthres	GLOB (HTE)					
	LUMI	PREC					
	EXscalar	SRCH					
	LLPs	SRCH					
10	EXtt	SRCH					
11	CKMWW	FLAV					
12	BKtautau	FLAV					
13	TwoF	HTE					
14	BCfrag	FLAV (PREC)					
15	Gsplit	PREC (FLAV)					

Parallel sessions

PLENARY HIGHLIGHTS (PHYSICS)

STEFAN DITTMAIER: • Opening talk with emphasis on precision aspects

- Good physics does not necessarily require new particles
- Hc coupling can be done at e^+e^- . What about Hs and He?
- ✓ SM precision pushed to the extreme at the Z pole
- → The e⁺e⁻ collider will make measurements in unchartered territory

Francesco Riva: Closing talk with emphasis on size of the Higgs boson.

PLENARY HIGHLIGHTS (FOCUS TOPICS)

Junping Tian (Hself): Higgs self-coupling; great potential at e^+e^- Caterina Vernieri (HtoSS) 3: Use $H \rightarrow s\overline{s}$ to inform detector design Roberto Franceschini (EXTT): Large potential of BSM top decays that are not explored at the LHC

[Craig, LCWS2023]

PLENARY HIGHLIGHTS (R&D)

MATTHIAS MENTINK: Existing cryogenic solutions work well; no commercial solution for conductors

MICHELA BRACCO: Detector magnet to look at MgB₂ conductors

RICCARDO FARINELLI: Overview of status and requirements of gaseous detectors (DRD1)

ROMAN PÖSCHL: Goal is to have the DRD6 Calo in place in Jan 2024

ZIAD EL BITAR Semiconductor DRD3 — plenty of R&D to follow

PLENARY HIGHLIGHTS (WG2)

JUAN MIGUEL CARCELLER: Key4hep: wide community from different experiments

 $\operatorname{ULI}\ \operatorname{Einhaus}\colon$ Reconstruction: make tools generic to use in Key4hep

JÜRGEN REUTER: Generators implement all necessary SM and BSM physics but a lot remains to be done.

François Brieuc: Simulation I, N, T, E, R, O, P, E, R, A, B, I, L, I, T, Y,

ALAN PRICE: Generator benchmarks R, E, P, R, O, D, U, C, I, B, I, L, I, T, Y,

PLENARY HIGHLIGHTS (PROJECTS)

JENNY LIST: Overview of the projects , and a focus on sustainability.

SRINI RAJAGOPALAN: US view with strong support for an e^+e^- Higgs factory :: (I noted the page on software)

KARL JAKOBS: FCFA activities

More efforts needed

EMANUELE BAGNASCHI: Important to involve ECRs. The future is theirs!

U.S. Higgs Factory Coordination Group

Solid State: A. Apresvan, C. Haber, C. Vernieri

◆Calorimeter: H. Chen. C. Tully A. White

Gaseous Detector: M. Hohlmann, G. Jakovidis, B. Zhou

◆Readout/ASICs: J. Gonski, J. Hirshchauer

Trigger/DAQ: Z. Demiragli, J. Zhang

◆Particle ID: M. Artuso, G. Wilson, 7. Ve.

♦ Quantum: M. Demarteau, C. Pena, S. Xie

♦ Software: H. Grav. O. Gutsche, J. Strube

Denisov S. Eno, P. Grannis, K. Jakobs, A. Lankford plus representation from DOF and CPAD.

Chair: S. Rajagopalan

- Follow-up events at the national level, organized by local committees of the ECFA countries
- Goal: discuss country-dependent issues/aspects (e.g. funding sources, role of the national agencies etc.)
- · Goal: help the formation of a cohese ECR community at the national level
- · Organization in progress, send an email to ecfa-ecr-future-colliders@cern.ch to participate!

NEXT STEPS

NEXT STEPS (AIDAN ROBSON)

- Document describing the focus topics later this year
- Inputs by end 2025
 - → Report structure by 2024
 - Focus input by May 2025,
 - Editing in summer
- Next strategy in 2026–27

JOSEPH MARTIN: Lessons from historical critiques of Big Science

HARRY CLIFF: Promise of revolutionary discovery is not the only standard by which future proposals should be held (Tevong You). Need a compelling argument for why we should build a future collider

JOSEPH MARTIN: Lessons from historical critiques of Big Science

HARRY CLIFF: Promise of revolutionary discovery is not the only standard by which future proposals should be held (Tevong You). Need a compelling argument for why we should build a future collider

Some challenges

JOSEPH MARTIN: Lessons from historical critiques of Big Science

HARRY CLIFF: Promise of revolutionary discovery is not the only standard by which future proposals should be held (Tevong You). Need a compelling argument for why we should build a future collider

A story for the Higgs

Questions related to the Higgs tend to be abstract. Harder to convey than 'we're going to discover a new particle' e.g.

- 1. Does the Higgs couple to the first generation as expected?
- 2. What is the natural width of the Higgs?
- 3. What is the form of the Higgs potential?

JOSEPH MARTIN: Lessons from historical critiques of Big Science

HARRY CLIFF: Promise of revolutionary discovery is not the only standard by which future proposals should be held (Tevong You). Need a compelling argument for why we should build a future collider

On Money

Costs of future colliders sound astronomical – tens of billions of euros/dollars.

Should try to put these costs in context – e.g. cost per citizen per year / comparison with other large projects.

Great work by Andrew Steele on this at www.scienceogram.org

promised

JOSEPH MARTIN: Lessons from historical critique HARRY CLIFF: Promise of revolutionary discover by which future proposals should be held (Textompelling argument for why we should build

On Money

Costs of future colliders sound astronomical – tens of billions of euros/dollars.

Should try to put these costs in context – e.g. cost per citizen per year / comparison with other large projects.

Great work by Andrew Steele on this at www.scienceogram.org

Discovering the Higgs boson literally cost peanuts.

The Biggest Bottleneck

Report on the ECFA e^+e^- workshop in Paestum

Nik|hef

Patrick Koppenburg

The Biggest Bo

Who do we need to persuade?

The public

Politicians & decision makers

community
Physicist
Oursel

being able to c who complain *themselves*.

I've have little

Most important is to build a community with a single goal

..which was the main aim of the workshop big enough group k devoting twenty, the hell out of the

ed in CERN courierl

If that group of people does not exist, forget it! Screw the politicians, screw all the arguments, screw everything

[Opkoppenburg.bsky.social] [Opkoppenburg | [patrick.koppenburg@nikhef.nl]

- ✓ Very constructive spirit towards a common goal
 - Work on commonalities
 - 3 WGs on physics, software and detector
 - → Please join! [gitlab]
 - \checkmark A plan with $\overline{14}$ focus topics
 - → next strategy update
 - Promote a narrative on why we need an e^+e^- Higgs/EW/top factory

MITTENING ALL CEPHALOPODS

USUALLY SCIENTISTS SAY A PROJECT SHOULD BE FUNDED BECAUSE IT'LL COST LESS THAN THE MOST RECENT STUPID WAR, SO I THOUGHT "IT'LL COST LESS THAN THAT DUMB THING" WAS A VALID ARGUMENT FOR FUNDING.

Backup

The Detector Zoo

