

Report from the DRD Committee

Thomas Bergauer (HEPHY-OEAW Vienna)

17 November 2023

Roadmap (Phil Allport)

Previous Talks on this subject

• 110th [link] (July 2022) and 111th Plenary ECFA meeting (November 2022) [link]: Towards Detector R&D Collaborations - Update on Detector R&D

- 112th Plenary ECFA meeting (July 2023) [link]: Report on ECFA Detector R&D Roadmap Implementation status (Felix Sefkow)
- 112th special ECFA-EPS session [link]: ECFA detector R&D roadmap (Didier Contardo)

• First Part:

- Updates on the process
- Introduction to new DRD Committee: Mandate, Members, Timeline for approval

Brief look at planned Detector R&D collaborations

Disclaimer: I am from the Silicon community, and I will use this on several occasions as an example

ECFA Detector Roadmap

European Committee for Future Accelerators (ECFA) released in 2021 a <u>full document</u> (200 pages) and <u>synopsis</u> (~10 pages) with this content:

The full document can be referenced as DOI: 10.17181/CERN.XDPL.W2EX

- Overview of **future facilities** (EIC, ILC, CLIC, FCC-ee/hh, Muon collider) or major **upgrades** (ALICE, Belle-II, LHC-b,...) and its **timeline**
- Nine Technology domains based on Task Forces areas
 - The most urgent R&D topics in each Task Force area identified as Detector R&D Themes (DRDTs)
- Concludes with ten "General Strategic Recommendations"

R&D Topics and DRDTs

- The most urgent R&D topics in each Task Force area are identified by **Detector Readiness Matrix**
 - Tables with much more details exist in roadmap (contains also target numbers for different experimental needs, e.g. ALICE 3: $0.05\% \text{ X/X}_0$ (per layer)
- **Detector R&D Themes (DRDTs)** were formulated as high-level deliverables

Semiconductor Example!

Strategic R&D vs. Blue Sky

Strategic R&D towards necessary technologies to build future facilities and experiments

- Addresses the DRDTs in ECFA roadmap by defining suitable deliverables and milestones
 - Technology Readiness Levels (TRL) 3-6
 - Backed up by **strategic funding**, agreed with funding agencies (MoUs)
- DRD collaborations should also contain a small "blue-sky" section (TRL 1-3)
 - Allow new developments to emerge
 - Possibly financed by common fund + institute contributions (RD50/51 scheme)

CADEMY OF

Example for the need of strategic funding

My group worked for almost a decade with European semiconductor industry to find a "second source" for largearea planar Si sensors

- Attracted a lot of attention
- Pushed HPK into developing 8" process → now being used for CMS HGCal
- Milestones:
 - 2009: re-produce 6" p-on-n strip sensors
 - 2015: First AC-coupled strip sensors on 8" wafers
 - 2016/17: production of first 8" hexagonal HGCal sensors
 - 2018: program stopped due to economic reasons

Reason for termination of program before series production:

- O(10) more wafer runs (~150k€ each) would have been necessary to mature the technology
- Strategic R&D funding for R&D costs → reduction of series production costs

Former CERN DG R. Heuer with Infineon

manager and HEPHY staff

Roadmap implementation plan

- Approved by CERN SPC and Council in fall 2022 (<u>CERN/SPC/1190; CERN/3679</u>)
- Two bodies review and evaluate DRD proposals:
 - "New" DRD committee: http://committees.web.cern.ch/drdc established late summer / autumn this year
 - ECFA Detector Panel: https://ecfa-dp.desy.de
- Interaction between DRD collaborations and CERN only through DRDC

DRDC Mandate

• DRDC Tasks:

- receiving and evaluating proposals for formal detector R&D collaborations
- evaluating, on a regular basis, the progress and plans of the collaborations and projects approved by the RB
- recommending corrective actions wherever they are deemed necessary
- providing other recommendations to the RB relating to detector R&D

• DRDC Composition, Chair:

- Nominated by CERN DRC
- Members should include a representative of the Large Particle Physics Laboratory Directors' Group (LDG) and cross-membership with the ECFA Detector Panel (EDP).
- Term: two years, renewable on two successive occasions for a maximum overall term of six years.

• DRDC Meetings:

- At least two official meetings per year, before the RB meetings
- Include an open session, where the proposals and progress reports are presented.

Committee Members

Detector R&D Committee (DRDC):

- Thomas Bergauer (HEPHY Vienna)
- Scientific secretary: Jan Troska (CERN)
- Stan Bentvelsen (NIKHEF, **LDG**)
- *Shikma Bressler* (Weizmann)
- Dimitry Budker (Mainz)
- *Roger Forty* (CERN)
- Claudia Gemme (INFN and U. Genoa)
- Inés Gil Botella (CIEMAT)
- *Petra Merkel* (Fermilab, US)
- Mark Pesaresi (Imperial College)
- Laurent Serin (IJCLab)
- Ex-officio: *P. Allport, D. Contardo* (EDP)
- Ex-officio: CERN DRC, EP dep. head, KT head

ECFA Detector Panel (EDP):

- Co-chairs: *Phil Allport* (Birmingham), *Didier Contardo* (Lyon)
- Scientific secretary: *Doris Eckstein (DESY)*
- Gaseous Detectors: Silvia Dalla Torre (Torino)
- Liquid Detectors: *Inés Gil Botella* (CIEMAT)
- Solid State Detectors: *Doris Eckstein, Phil Allport*
- PID & Photon Detectors: *Roger Forty* (*CERN*)
- Quantum and emerging Technologies.: *Steven Hoekstra (Groningen)*
- Calorimetry: *Laurent Serin* (*IJCLab*)
- Electronics: *Valerio Re (Bergamo)*
- Ex Officio: ECFA Chair (Karl Jakobs), ICFA Detector Panel (Ian Shipsey), DRDC chair (**Thomas Bergauer**), APPEC & NuPECC observers

From ECFA Task forces and RD collaborations to DRD collaborations

Timeline:

- Review of DRD proposals by DRDC this fall:
 - Nine DRDC internal meetings so far discussing DRD proposals
 - Several meetings between DRDC and proponents of collabs.
 - Three iterations of each proposal received after suggestions from DRDC
- Approval by the end of 2023
 - 4th December: 1st official (but fully closed) DRDC meeting with presentations and discussions with each DRD proposal teams
 - 6th December: Official approval by CERN Research Board
- Once approved, DRD collaborations can start in 2024
 - Enables entry to CERN grey book, so that team leaders of each participating institute can be nominated and users registered
 - Collaborations will have kick-off meetings, elect spokespersons
 - MoU setup and collecting signatures from Funding Agencies
 - Later: Annual status reports to DRDC; monitoring of milestones and deliverables

 Community input by open meetings Q1/2023 • Submission of proposals to DRDC End 07/23 • Review by CERN DRDC, assisted by ECFA EDP Fall 2023 • Approval, then: • Collaboration starts End 2023 MoU negotiations and signature collection 2024 annual status reports and

2024ff

monitoring to DRDC

Memorandum of Understanding

- All institutes of one DRD collaboration sign a "light-weight" MoU
 - Does not contain commitments on strategic funds
 - Defines Common Fund, if agreed by the respective DRD Collaboration
 - Covers IP topics, how to handle involvement of industr
 (In that case very similar as the current existing MoUs of RD50/51)
 - MoU Template will be provided by CERN (currently being negotiated with legal office, KT, DRC,...)
- Strategic funding will be agreed upon in annexes to this lightweight MoU
 - One Annex per Work Package, signed by the FAs of the institutes involved in the respective WP

Status in the US and elsewhere

- Result from US Snowmass process: recommendation to create Detector R&D collaborations in the US
 - Organized by CPAD (Coordinating Panel for Advanced Detectors) of the APS/DPF (one chairperson from CPAD is in DRDC)
 - They created 11 RDCs (R&D Collaborations) and appointed coordinators (see CPAD website)
 - Recently started to reach out to the community and work on detailed planning: <u>CPAD workshop 7-11 Nov at SLAC</u>
 - Overlap to DRDs through people/groups involved in both and liaisons
- **EU-funded programs** play an important role in enabling and supporting generic R&Ds, and fostering collaboration: AIDA/2020/innova, ATTRACT, ERC grants

RDC#	TOPIC		
1	Noble Element Detectors		
2	Photodetectors		
3	Solid State Tracking		
4	Readout and ASICs		
5	Trigger and DAQ		
6	Gaseous Detectors		
7	Low-Background Detectors		
8	Quantum and Superconducting Sensors		
9	Calorimetry		
10	Detector Mechanics		
11	Fast Timing		

Proposed Detector R&D collaborations

Highlights of scientific programs, organization and community contributions

Status of Proposed DRD Collabs.

Collab.	Topic	Initial Proposal Submission	Seeking approval	comment
DRD 1	Development of Gaseous Detectors	July 2023	Dec. 2023	Former RD51
DRD 2	Liquid Detectors	July 2023	Dec. 2023	
DRD 3	Solid State Detectors	3 Oct. 2023	Dec. 2023	Former RD50
DRD 4	Photon Detectors and Particle Identification Techniques	July 2023	Dec. 2023	
DRD 6	Calorimetry	July 2023	Dec. 2023	CALICE, CrystalClear
DRD 5	Quantum and Emerging Technologies		later	
DRD 7	R&D Collaboration for Electronic Systems	Lol submitted	later	
TF 8	Integration	-	later	Workshop on 6 th Dec.

DRD1: Gaseous Detectors

DRDT 1.1	Improve time and spatial resolution for gaseous detectors with
	long-term stability

DRDT 1.2 Achieve tracking in gaseous detectors with dE/dx and dN/dx capability in large volumes with very low material budget and different read-out schemes

DRDT 1.3 Develop environmentally friendly gaseous detectors for very large areas with high-rate capability

DRDT 1.4 Achieve high sensitivity in both low and high-pressure TPCs

DRDTs Work Packages 1.1 1.2 1.3 1.4 Work Packages Drift chambers Drift chambers Straw chambers Tracking TPCs Calorimetry Photon detection (PID) Timing detectors Reaction/decay TPCs Beyond HEP Tracking TPCs Reaction/decay TPCs Beyond HEP Tracking TPCs Reaction/decay TPCs Beyond HEP

Organized in

- **Working Groups:** serving as the backbone of the proposed R&D environment and framework
- **Work Packages:** will consolidate the activities of institutes with shared research interests in specific areas,
- and Common Projects (blue sky) financed by fixed yearly fee (Common Fund)
- Large community of 160 institutes
- Budget: 3 MCHF/y existing, additional 3 MCHF/y requested, 270/100 FTE
- Community meeting: <u>most recent June 23</u>; next tentatively scheduled for Dec. 2023; DRD1 Kick-off meeting Jan-Feb 2024
- Web page: https://drd1.web.cern.ch/ (with proposal v1.4)

- Covers Dark Matter and Neutrino experiments, accelerator and non-accelerator-based
- Several large-scale and many small-scale experiments running or foreseen with liquid detectors
- Technology: Noble Liquids (e.g. DUNE), Water Cherenkov (e.g. Super/Hyper-K) and Liquid Scintillator with light and ionization readout
- Underground Dark Matter Experiments small and rare signals R&D for multi-ton scale noble liquids:
 - Target doping and purification
 - Detector components radiopurity and background mitigation

> 2045

Note: Developments in this field are rapid and it is not possible today to reasonably estimate the dates for projects requiring longer-term R&D

DRD2 Collaboration

Countries invovled in DRD2

- DRD2 proposal v4 almost final, divided in four WPs
 - Aligned but not identical to DRDTs
 - Based on 51 bottom-up projects
 - 150 participants in community meeting
 - Conveners: Roxanne Guenette, Jocelyn Monroe + 21 contributors
- DRD2 Collaboration from 114 institutes in 15 countries
 - Significant US contribution (>25%)
 - Nominated liaisons to DRD1,4 and 7
- Budget:
 - 2.6 / 7.8 M€/y (available / required)
 - 148.4/305.6 (available/required) FTE

DRD3: Semiconductor Detectors

- DRD3 benefits from existing RD50 collaboration
 - Extended by diamonds (RD42) and 3D integration
- Organized in
 - Work Packages identical to DRDTs
 - Working Groups very similar to current RD50
 - Common projects (for blue-sky) (many still running from RD50)
- Large Collaboration: 129 institutes,
 28 countries, ~900 interested people
 - ~ 70% are from Europe, 15% from North America,
 - Compare: RD50: 65 institutes and 434 members
- Budget:
 - ~5 MCHF/y (existing), ~8 MCHF/y (requested)
 - 327 FTE (existing), 170 FTE (requested)

WP	Task	Title	
1	1.1	DMAPS: spatial resolution	
1	1.2	DMAPS: timing resolution	
1	1.3	DMAPS: read-out architectures	
1	1.4	DMAPS: radiation tolerance	
2	2.1	4D tracking: 3D sensors	
2	2.2	4D tracking: LGAD	
3	3.1	Extreme fluence: wide band-gap materials (SiC, GaN)	
3	3.2	Extreme fluence: diamond-based detectors	
3	3.3	Extreme fluence: silicon detectors	
4	4.1	3D Integration: fast and maskless interconnect	
4	4.2	3D Integration: in house post-processing for hybridization	
4	4.3	3D Integration: advanced interconnection techniques for detectors	
4	4.4	3D Integration: mechanics and cooling	

AUSTRIAN ACADEMY OF SCIENCES

HEPHY INSTITUTE OF HIGH ENERGY PHYSICS

20

DRD3: Semiconductor Detectors

DRD4: Photodetectors & Particle ID

- Particle Identification (PID) essential to identify decays when heavy flavor are present
- **Developments** on PMTs, MCP-PMTs, SiPMs, APD, HPD, quantum devices, SciFi,
 - Challenges for example for SiPMs: rad hard, dark rate, timing
- **Applications** in Ring Imaging Cherenkov Detectors (RICH), Time-of-Flight (ToF), TRD
- Connection to almost every other DRD collab. (gas, Silicon, Calo, electronics, SiPM at cryogenic temp.)

DRDT 4.1 Enhance the timing resolution and spectral range of photon detectors

DRDT 4.2 Develop photosensors for extreme environments

DRDT 4.3 Develop RICH and imaging detectors with low mass and high resolution timing

DRDT 4.4 Develop compact high performance time-of-flight detectors

- Collaboration currently led by Christian Joram (CERN) + Peter Krizan (Ljubljana)
 - + team of 12 others
 - election of management when collaboration officially constituted in 2024
- 67 institutes + 7 industrial partners
 - EU + 6 US, 2 China, 2 Japan, 2 Australia, 1 S.Korea, 1 Armenia
- Budget
 - 100 FTE/y (avail), ~60 FTE/y (additional)
 - 1.5MCHF/y (avail.), 1.8MCHF/y (additional)

DRD6 Calorimetry

- Collaboration emerged from <u>CALICE</u> and <u>CrystalClear</u> (RD18)
 - 23 input proposals were collected from existing collaborations, boiled down to four WPs and five Working Groups
 - 110 institutes; 183 FTE/y (existing), 100 FTE/y requested
 - Budget ~3.2M€/y existing, ~1.4 to 2.4M€/y requested (2024-2026)
- R&D in calorimetry has a particularly long leadtime due
 - Many technology developments (gas, scintillator or Silicon-based readout) done in other DRDs
 - Large and challenging prototype setups even in early stages
 - Dedicated calorimeter test beam line requested

PRDT 6.1 Develop radiation-hard calorimeters with enhanced electromagnetic energy and timing resolution

DRDT 6.2 Develop high-granular calorimeters with multi-dimensional readout for optimised use of particle flow methods

DRDT 6.3 Develop calorimeters for extreme radiation, rate and pile-up environments

DRD5: Quantum Sensors

- Quantum Technologies are a rapidly emerging area of technology development to study fundamental physics
 - Targeting Gravitational Wave, Axion, DM detection
 - development of HEP detectors on the long term
- Many different sensor and technologies being investigated: clocks and clock networks, kinetic detectors, spin-based, superconducting, optomechanical sensors, atoms/molecules/ions, interferometry, ...
- Several initiatives started at CERN, DESY, UK,...

Example: potential mass ranges that quantum sensing approaches open up for Axion searches (from: ECFA roadmap)

DRD5 Collaboration

- 40 institutes in 15 countries
- 25 proposed contributions
- conveners: Marcel Demarteau, Michael Doser
- White Paper / LoI being submitted to DRDC
 - Information on personal web page of M. Doser

• A <u>workshop</u> to prepare the proposal for submission by the end of the year took place Oct. 2-4.

DRD7: Electronics

- LoI exists, full proposal to be submitted by the end of this year
 - To ensure no duplication and foster cooperation between different DRDs
 - NOT to understand the immediate needs of the other DRD collaborations
 - Develops strategic electronics (e.g. GLIB, FC7, FEAST DC-DC converter)
 - Single point of contact to foundries

• Organization:

- Six (Seven) Development areas (WPs)
- 50 Institutes, 18 countries
- Steering committee: Jerome Baudot, Marcus French, Angelo Rivetti, Frank Simon, Francois Vasey + 20 WP coordinators
- <u>1st workshop</u> happened in March, <u>2nd workshop</u> 25-27 September 2023

16 projects in a bottom-up approach, but ensured that all are above certain threshold and fit the WGs

- 7.1a: Silicon Photonics Transceiver Development
- 7.1b: Powering Next Generation Detector Systems
- 7.1c: Wireless Allowing Data and Power Transmission
- 7.2a: eFPGA Programmable Logic Array
- 7.2b: Radiation Tolerant RISC-V processor
- 7.2c: Virtual electronic system prototyping
- 7.3a: High performance TDC and ADC blocks at ultra-low power
- 7.3b-1: Data-driven impact studies and calibration strategies for time measurements
- 7.3b-2: Timing distribution techniques and systems

- 7.4a: Modeling and development of cryogenic CMOS PDKs
- 7.4b: Radiation resistance of advanced CMOS nodes
- 7.4c: Cooling and cooling plates
- 7.5.a COTS architectures, tools and IP
- 7.5b: No backend, full 100GbE solutions from FE to DAQ
- 7.6a: Common access to selected imaging technologies and IP blocks
- 7.6b: Common access to 3D and advanced integration

Task Force 8: Integration

- DRDTs are quite diverse
- Some topics are very closely connected to the genuine DRDs, where the technology is developed (e.g. DRDT 8.3)
- No DRD collaboration has been proposed yet, but 16 institutions replied favourably to a community survey
 - **Community Meeting on December 6, 2023**

Topics:

- Gas cooling development
- Single- and two-phase liquid cooling R&D
- Humidity control
- Temperature control
- Thermal management
- Thermal performance verification
- Thermal interface materials and expansion differences
- Pipe materials, pipe connection techniques and fittings
- Choices and characterisation of construction materials
- 3D printing
- Radiation and mechanics: Materials and issues like access constraints
- FEA and its comparison to real objects
- Structure design and optimisation
- Application of machine learning for design issues

- New Detector R&D (DRD) collaborations are being set up following the ECFA Detector roadmap to pave the way for the next decades.
 - Main Goal: Instrumentation is not the limiting factor to meet the needs of the long-term particle physics program
 - Collaboration-building for communities that have not worked together before
- Submitted, currently being reviewed by DRDC: **Gas detectors** (DRD1), **liquid detectors** (DRD2), **semiconductor detectors** (DRD3), **photodetectors & particle ID** (DRD4), **calorimetry** (DRD6)
 - DRDC and CERN research board approval meetings 4th and 6th of December
 - The proposals will then be publicly accessible in the CERN CDS
- Proposal Submission later:
 - Quantum sensors (DRD5), Electronics (DRD7)
 - **Integration** (DRD8) to be decided

- What might be missing at this point?
 - A coherent picture of **resources across all DRDs** so that funding agencies get the total demand
 - Discussions on national level started
 - Currently, the strategic funding listed in the proposal is just "wishful thinking"
 - Better coordination between different DRDs to reduce duplications and synchronize activities, especially for electronics (e.g. CMOS sensors)
 - Coordinated approach on how to involve industry (IP topics) and non-European groups
- Proposal approval, collaborations kick-off, MoU signatures

The End.

Acknowledgments: Phil Allport, Didier Contardo, Roger Forty, Susanne Kühn, Felix Sefkow, Laurent Serin, Maxim Titov and others

Links:

- DRD Committee
- Future CERN Indico Section of all DRD Collaborations
- Link to all TF/DRD community meetings and resources

CADEMY OF

Checklist for proposal evaluation

- Check if the proposal format matches guidance document from EDP (tables, layout,..)
 - Document linked <u>here</u> and <u>here</u> (if not accessible at Indico)
- Milestone and Deliverables match <u>ECFA detector roadmap</u>
- 3. Committed resources (FTE / funds) match the demand given by the scientific program
- Collaboration structure exists (institution board, conference board, decision-making bodies,..) 4.
- 5. Common fund and its usage (for small bottom-up projects, but also for administration?)
- Overlap/transition from existing collaborations explained
 - DRD1/3: RD51/50: common projects, common fund
 - DRD6: Calice, CrystalClear
 - DRD5: CERN quantum initiative
- Interconnections
 - Explanation of scientific topics which overlap with other DRDs, especially electronics
 - Liaisons nominated to other DRDs and the US DRC groups
 - Industry participation

Draft DRD Proposal Guidance

33

(16th February 2023)

Updated 29th June 2023 following discussion with DRDC Chair

2. Main Proposal:

To keep the process manageable for both proponents and reviewers, it is recommended that the DRD proposal document should not exceed 20 pages, following a common outline template as suggested below:

- Introduction (objectives of the DRD collaboration)
- Planning technology area 1 (including a task/deliverable synoptic, resources and list of contributing institutes)
- ...
- Planning technology area n (including a task/deliverable synoptic, resources and list of contributing institutes)
- Interfaces to other DRD proposals including particularly the links to DRD7 as a transversal Detector R&D topic area
- Common simulation tools and test facilities
- Partnerships (industrial, other research areas, other applications)
- Networking and training
- Proposal for the collaboration structure
- Resources (as discussed below) both existing and anticipated
- Summary (high level planning synoptic by DRDT broken-down to sub-areas)

Beam test schedule

By coincidence, there is a lack of beam test possibilities in 2026-2028. At CERN this is caused by LHC LS3 and the upgrade to HL-LHC

https://cern.ch/international-facilities

2029

Future Large Experiments

LHC

(HL-)LHC timeline:

2022

2024

2025

2026

2027

2028

- Five Time periods defined
 - In agreement with (HL)-LHC

Future "Smaller" Experiments

Different time periods as for large experiments:

