

Testbeam Analysis

REFERENCE DETECTORS

AIDA-Telescope

- 6 mimosa26 planes
 - Only working ones (end of lifetime)
 - 2 in front of MPW3
 - 3 at the back of MPW3
- 3D reference tracks reconstructed
- Event definition: M26 record data for 230us, roughly +/- 100 us around the trigger

AIDA TLU for Trigger handling + Timestamping

Timing Layers

- We tried an FEI4 and Timepix3 plane as timing reference layer
- FEI4 setup by CERN, worked with some issues
 - Crashes every ~30min (know bug, but not to us at the beginning) ->
 Huge data loss for 1 night
 - Solution: Sam scripted some magic to automatically Stop, configure and Start a run again
 - Overwrites data from telescopes -> Data loss for ~2 days (as we didn't check this)
- Timepix3 setup by Uwe
 - We did not manage to get it working due to more serious issues with other detectors
- Why do we need timing?
 - We expect around 50 tracks per event in the mimosa26 planes -> Hard to find the correct track with 3D tracking only
 - 4D tracking let's us easily distinguish between them
 - Problem not known to us before, so we were not prepared

DATA TAKING

EUDAQ2

eudaq Run Control v2.5.2-7-g3db306e ∨ ੲ ।								
State:								
Current State: Uninitialised								
Control								
Init file:	/home/telescope/software/eudaq-master/conf/rd50/beam/mpw3.ini						Load	Init
Config file:	/home/telescope/software/eudaq-master/conf/rd50/beam/mpw3_ignore_FEI4.conf						Load	Config
Next RunN:							Start	Stop
	24%							Terminate
Log:							Log	✓ LogConfigs
ScanFile	/home/telescope/cmstb/eudaq/conf/RepeatRuns.scan						Load	Start Scan
Run Number tlu_dc:DataC ni_mimosa:P mpw3_dc:Da Connections	ollector: roducer:	807 (next run) 0 Events 0 Events 0 Events		one_dc:DataCollector: 0 Events aida_tlu:Producer: 0 Events USBpixI4:Producer: 0 Events RD50_MPW3:Producer: 0 Events				
type	▲ name	state	connection	message	information			
LogCollector DataCollector DataCollector Producer Producer Producer Producer DataCollector	r log or one_dc or tlu_dc RD50_MPW3 ni_mimosa aida_tlu USBpixI4	UNINIT UNINIT UNINIT UNINIT UNINIT UNINIT UNINIT UNINIT UNINIT	tcp://192.168 tcp://192.168 tcp://192.168 tcp://192.168 tcp://192.168 tcp://192.168 tcp://192.168		<pre><_SERVER> tcp://45391 <eventn> 0</eventn></pre>	entN> 0.000000		

Producer: Slow Control of detectors aka "what happens if you press Init, Config, Start"

DataCollector: Stores data from detectors to disk

Monitor: Live plotting of some fraction of the data. Monitor for MPW3 available (not shown)

Data Flow

- DataCollectors for TLU, M26 and FEI4 store data to external HDD (on CERN PC)
 - rsync command to copy to EOS (CERN Fileserver)
- MPW3 stores to internal disk of (our) NUC
 - Automatic CERNbox sync to EOS
- This way, we store each piece of data twice
 - Automatic backup;)

Timing MPW3

- Due to low data-rate: hits sent out immediately from MPW3
- Firmware buffers them unteil a certain amount of data is stored before sending to as a UDP Jumbo frame
- Causes issue with calculating global timestamp (TS): too long waiting time, we do not see all TS overflows
 - Solution: Attach a 64 bit TS counter to UDP packet -> Change of firmware during testbeam!
 - Did cost us 3 days to find the issue

Other MPW3 issues

- We did not see a reset of all timestamp (in firmware + ASIC) every time
 - Crucial to know "when time starts" = t0 for synchronization
- Problem: We slowed down the TLU clock, but this does not slow down the whole interface (which we expected) -> Firmware didn't capture every (still fast) to signal anymore
 - Solution: Another fix in the firmware, during the testbeam ;)
 - Did cost us another ~1 day to find out
- We did not have an online quality monitor
 - Lack of time
 - Could not verify with time synchronization actually works, so we had no clue during the testbeam if stuff is good or not.
- All together: Just 1 day + 1 night of useful data...

ANALYSIS

Corryvreckan

- No Tutorial here, but have a look at https://project-corryvreckan/
 - Tutorial, workshop, detailed documentation available
- Eventloading and Eventdefinition is working
 - Uwe managed to setup M26 part
 - Bojan managed to load FEI4 Files
 - Bernhard managed to load MPW3
 - MPW3 needs preprocessing -> Next slide
- Check of synchronization: Define a (M26) plane as reference and plot correlations (x-x_ref etc...)
 - Did work for M26 planes immediately during testbeam
 - Did not work for FEI4 and MPW3
 - Bojan fixed FEI4 shortly after testbeam, looks fine

MPW3 Analysis

- MPW3 need a preprocessing step before loading it to Corryvreckan
 - Assigns global TS to the pixel hits
 - Done within EUDAQ framework
 - <u>raw event</u> = Data stored to disk (online, during data taking)
 - 0s in UDP stream are thrown away
 - <u>preprocessed event</u> = including global timestamp calculation after preprocessing
 - Both types are stored in EUDAQ binary format
- Calculating a global TS is very difficult (have a look at backup)
 - We did not manage during testbeam
 - We did not see correlations...

Correlations !!!

After 1 week of analysis,

- Very preliminary, needs some checks
- we do not fully understand why we see them (we apply a "random" time shift)
 - We do not know if this is constant for every run

15

WHERE TO GO?

RD50-MPW3

Shall we design a new Chipboard?

Shall we test the piggy board?

RD50-MPW4

Another MPW run is a reasonable option. Current design is not yet ready for engineering run.

- Fixing current issues of RD50-MPW3:
 - Interface between matrix and periphery
 - We know the problem and have a solution
 - Easy generation of global timestamp
 - · We know the problem and have a solution
 - High noise in lower half of matrix
 - · We have a hint where the problem is
- Adding more features for the future
 - Depends on where we want to go. Telescope? Future detectors (FCC)?
 - Thinning, backside processing
 - Scaling of the sensor (Does require detailed design study to identify limits)
- Can we already start designing? Who would be in?
 - I'm not available for the digital design anymore
 - (unless somebody has money for a postdoc;))
- Need strategy for transition from RD50 to ECFA DRD scheme from 2024 onwards

BACKUP

Event Definition

- M26 Event Definition
- 230us long event frame
 - Between ~ +/-100us before trigger recorded in TLU

- Event matching (for correlations):
 - Every other detector, which has a timestamp in this window in correlated with every event from M26 reference plane
 - Trigger number irrelevant

MPW3 Readout

- Assuming a low trigger-rate of a few 100Hz to 1 kHz
- Event read out instantly: SOF + 1 Pixel-event + EOF
 - No buffer in ASIC used
- Time information from chip:
 - 8 bit Pixel event
 - 8 bit in SOF (written when SOF received by FPGA)
 - 8 bit in EOF (written when EOF received by FPGA)
 - Due to instant readout: SOF and EOF bit are usually the same or differ by 1 if you're unlucky
 - Give 16bit at 20MHz, thus an overflow every 2^16*50ns =3.276.800 ns or every 3.2ms

Firmware readout

- UDP buffer of depth 4096 implemented
 - 1 Word = 1 Pixel-event or 1 SOF or 1 EOF (32 bits each)
 - Due to low event rate/instant readout the buffer looks like this: SOF,
 1 PixEv, EOF, SOF, 2 PixEv, EOF,.... (Thus, 7 of the FIFO spots are written here)
- Fifo read-out when either half full (2048) or after ~1ms (Query by software)
 - Usually: 1ms is the case.
- UDP packet is always 2048 words long -> Rest filled with 0
 - Usually, a lot of 0, only few frames.
 - Time needed to send 1 UDP packet: 2048 * 32 * 1ns (=1GHz) =
 66.048us
 - At the end of a UDP packet, a 64bit counter (at 20MHz) is sent
- 64bit counter, SOF + EOF counter and ASIC are reset at t0

Software readout

- Online: A full UDP packet is loaded into the buffer
 - Packet counter (to check for missing packets) checked
 - Discard 0 events
 - Store blocks between SOF and EOF as raw events, attach 64bit counter to each <u>raw event</u>
- Offline (Preprocessing):
 - Take 8 bit from pixel event + 8 bit from SOF (3.2ms OF)
 - Check for SOF Overflow
 - Replace last 16 bits of the 64 bit counter (queried every 1 ms) to generate <u>preprocessed Event</u>.
 - If SOF Overflow x times <u>subtract</u> x times 3.2ms to 64 Bit counter (last SOF closest to time when 64 bit counter is written)
- Analysis:
 - Possibility to subtract us from MPW3 event