The Bounded Information Bottleneck Autoencoder (BIB-AE)

Erik Buhmann, Sascha Diefenbacher, Engin Eren, Frank Gaede, Gregor Kasieczka, William Korcari, Anatolii Korol, Katja Krüger, **Peter McKeown**¹, Lennart Rustige

¹Deutsches Elektronen-Synchrotron

21.11.2022

peter.mckeown@desy.de

VAE vs GAN Architectures

- Encoder/decoder pair
- Data mapped to regular Gaussians
- Decoder generates samples from latent space

X Less expressive

Scalable to high dimensions!

- Generator/discriminator pair
- Adversarial feedback from discriminator trains generator
- Generator produces samples
 - X Hard to train

Can be rather expressive

Bounded Information Bottleneck Autoencoder: Motivation

- Motivated by information theory: the **Information Bottleneck Principle**^{[1],[2]}
 - Optimise trade-off between compression and retention of useful information
 - For the BIB-AE: $\mathscr{L}(\phi, \theta) = I_{\phi}(X; Z) \beta I_{\phi, \theta}(Z; X)$
 - $I_{\phi}(X; Z)$ = mutual information between training data vector X and latent vector Z; ϕ = encoder params., θ = decoder params.
 - β controls the compression/information retention balance

• BIB-AE: Unifies features of common GANs and VAEs^[3]

[1] Tishby et al.: **The information bottleneck method**, <u>arXiv:physics/0004057</u> (2000)

[2] Tishby and Zaslavsky: **Deep Learning** and the Information Bottleneck Principle, <u>arXiv:1503.02406</u> (2015)

[3] Voloshynovskiy et. al: Information bottleneck through variational glasses, arXiv:1912.00830 (2019)

Components of the Core BIB-AE Architecture

- A: latent space KL-divergence term
- **B** : latent space discriminator/MMD term
- **C**: data space MSE term
- **D**: data space discriminator

Voloshynovskiy et. al: Information bottleneck through variational glasses, arXiv:1912.00830 (2019)

Adaption to Highly Granular Calorimeter Shower Data

- Highly granular calorimeter data is very sparse
 - Causes problems for an MSE based loss
 - Switch to a discriminator based approach
- **Cell energy spectrum** has a very steep rise (MIP peak- important for calibration)
 - Difficult to model with an adversarial approach...

- Offload to separate **Post Processor** network:
 - 3D convolutions, kernel size 1
 - MSE loss and Sorted Kernel MMD loss
 - Encourage network to modify individual pixels

Buhmann et. al: Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed, <u>CSBS 5, 13</u> (2021)

Latent Space sampling

- **Relaxing regularisation** of latent space allows more information to be stored
 - Latent space deviates from a Normal distribution
- Employ density estimation to produce latent sample (e.g. KDE)
- Improve modeling of shower shape (center of gravity)

Buhmann et. al: Decoding Photons: Physics in the Latent Space of a BIB-AE Generative Network, EPJ Web of Conferences 251, 03003 (2021)

From Photons to Pions

Photon showers

- Predominantly governed by **EM** interactions
- Compact structure

Easy to generalise

Pion showers

- Hadronic and EM interactions
- Complex structure
- Large event-to-event **fluctuations**

Hard to learn

Pion Showers: Sim Level Results

Buhmann et. al., Hadrons, Better, Faster, Stronger, MLST 3 025014, (2022)

• **BIB-AE** shows consistently **high performance**; WGAN performance is mixed

Pion Showers: Resolution Before and After Reconstruction

• Interface with **Pandora PFA**; after reconstruction BIB-AE performance reduces- requires further study!

DESY. CERN and IBM Workshop on Foundation Models and Detector Simulation | Peter McKeown | 18.11.2022

Pion Showers: Computing Time for Inference

Hardware	Simulator	Time / Sl	nower [ms]	Speed-up
CPU	Geant4	2684	± 125	$\times 1$
	WGAN BIB-AE	47.923 350.824	± 0.089 ± 0.574	$\times 56 \\ \times 8$
GPU	WGAN BIB-AE	$\begin{array}{c} 0.264 \\ 2.051 \end{array}$	± 0.002 ± 0.005	×10167 ×1309

Speed-up of as much as four orders of magnitude on single core of Intel[®] Xeon[®] CPU E5-2640 v4 and NVIDIA[®] A100 for the best performing batch size

Angle and Energy Conditioning

- Multi-parameter conditioning essential to generalise simulation tool
- Normalising Flow for latent sampling- fast sampling with multiple conditioning parameters
- Flow generates latent variables + Esum given angle and energy
- Additional **energy sum** conditioning in Post Processor- rescale per shower energy to pin down energy sum

DESY. CERN and IBM Workshop on Foundation Models and Detector Simulation | Peter McKeown | 18.11.2022

Results: Angular resolution- Sim vs Reco

DESY. CERN and IBM Workshop on Foundation Models and Detector Simulation | Peter McKeown | 18.11.2022

Results: Visible Energy Sum- Sim vs Reco

Results: Cell Energy Examples at Sim Level

Conclusion: Pros and cons

Pros

- Highly expressive architecture
- Permits **application-specific** modifications for increased performance
- Strong theoretical motivation enables targeted hyper-parameter tuning
- Capable of tackling multiple **different physics** cases (electromagnetic + hadronic showers)
- Possible to extend the framework to multi-parameter conditioning
 Cons
- Very **complex** architecture- lots of moving parts
- Quite a lot of parameters: ~10 million in current setups- reduced sampling speed (compared to e.g. a WGAN)
- Despite significantly increased stability, adversarial training still requires some care

Problem with MSE

MSE trained Autoencoder

Reconstruction 2

Pion Dataset

- Remove ECal from geometry
- Training data generation with Geant4
- Irregular HCAL geometry projected into 25x25x48 regular grid
 - Significantly reduce sparsity
 - Barely lose any hits

- 500k pion showers
- Fixed incident point and angle
- Uniform energy: 10-100 GeV

Pion Showers: Sim Level Results

DESY. CERN and IBM Workshop on Foundation Models and Detector Simulation | Peter McKeown | 18.11.2022

Pion Showers: Sim Level Results (continued)

Pion correlations

GEANT4 - BIB-AE

										E_{1}	E_{2}	E_{3}
	$m_{1,x}$	$m_{1,y}$	$m_{1,z}$	$m_{2,x}$	$m_{2,y}$	$m_{2,z}$	$E_{ m vis}$	$E_{ m inc}$	$n_{ m hit}$	$/E_{ m vis}$	$/E_{ m vis}$	$/E_{\rm vis}$
$E_3/E_{\rm vis}$	-0.01	-0.04	0.00	-0.07	-0.04	-0.07	0.00	0.01	-0.01	-0.00	-0.03	0.00
$E_2/E_{\rm vis}$	-0.01	-0.00	-0.03	0.02	-0.02	0.01	-0.02	-0.02	-0.01	0.02	0.00	
$E_1/E_{\rm vis}$	0.00	0.03	0.00	0.04	0.04	0.04	0.01	0.00	0.02	0.00		
$n_{ m hit}$	0.03	-0.02	-0.02	0.13	0.14	0.06	0.00	-0.01	0.00			
$E_{\rm inc}$	0.01	-0.03	-0.00	0.08	0.09	0.06	-0.01	0.00				
$E_{\rm vis}$	0.03	-0.02	-0.01	0.09	0.09	0.06	0.00					
$m_{2,z}$	-0.06	0.01	-0.06	-0.08	-0.05	0.00						
$m_{2,y}$	-0.10	-0.03	-0.05	0.01	0.00							
$m_{2,x}$	-0.08	-0.00	-0.06	0.00								
$m_{1,z}$	-0.01	-0.04	0.00									
$m_{1,y}$	-0.00	0.00										
$m_{1,x}$	0.00											

GEANT4 - WGAN

Results: Energy linearity Sim vs Rec

Results: Energy resolution Sim vs Rec

