Machine learning in nuclear and particle physics

Christophe Rappold

IEM – CSIC GSI Helmholtz Centre for Heavy Ion Research – Darmstadt, Germany

27 January 2023

Outlook

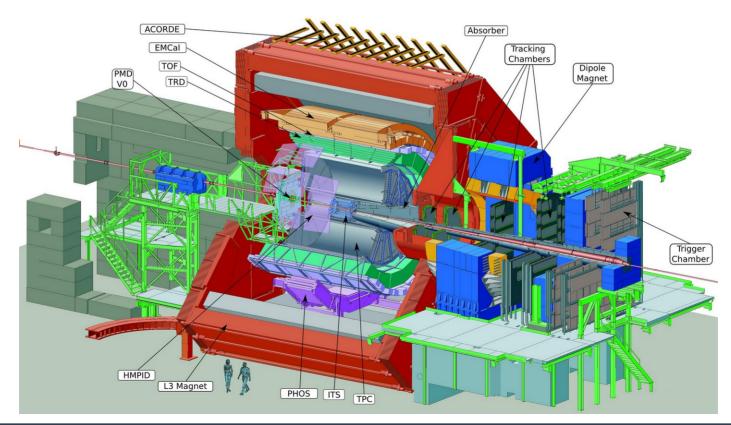
- ML : particle identification
- GNN : particle tracking
- CNN : alpha decay in emulsion
- GAN : simulate emulsion reaction
- Mask R-CNN : hypernuclei finding in emulsion

ML for Particle Identification

• ALICE experiment :

27/01/2023

- PID with TPC and TOF

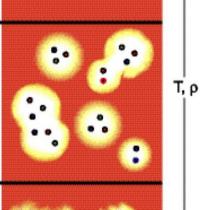


QGP : Quark Gluon Plasma

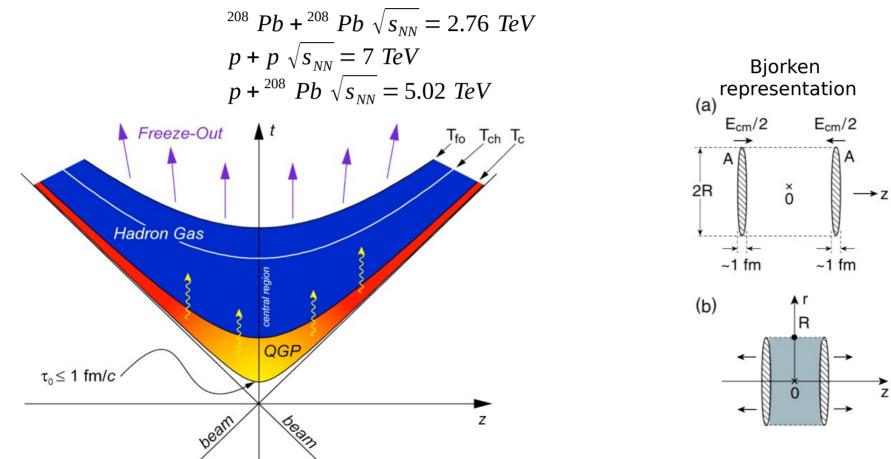
- Hadron: described QCD (quarks & gluons) T, plow
- When heated or compressed
 - \rightarrow Overlap each others
- Quark and gluons move around in relatively large volume
- Phase transition between QGP and hadron gaz.

phase transition Τ, ρ critical

quark-gluon-plasma Τ, ρ high



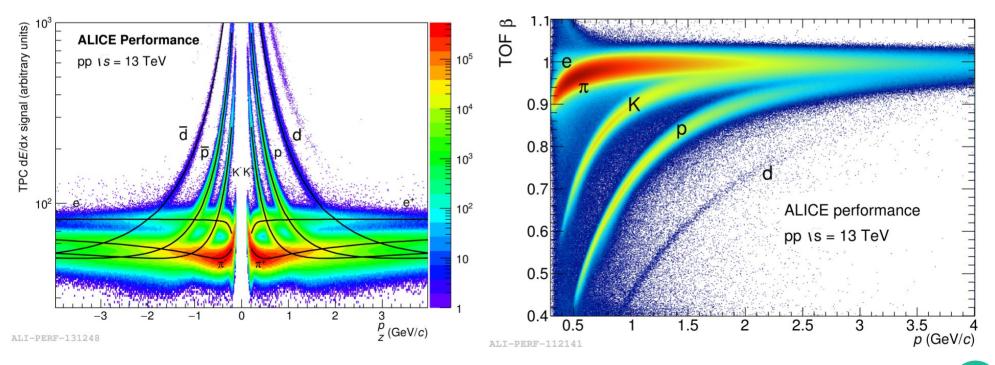
• Features of the collisions at ALICE :



27/01/2023

C. Rappold - ML in Exp. physics

- ALICE experiment :
 - PID with TPC and TOF

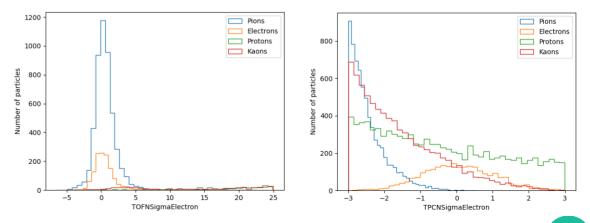


- Models of dE/dx vs p/q & β vs p/q
- $\langle -\frac{dE}{dx} \rangle = K z^{2} \frac{Z}{A} \frac{1}{\beta^{2}} \left[\frac{1}{2} \ln \left(\frac{2m_{e}c^{2}\beta^{2}\gamma^{2}Wmax}{I^{2}} \right) \beta^{2} \frac{\delta(\beta\gamma)}{2} \right]$ $\beta = \frac{1}{\sqrt{m^{2}/p^{2} + 1}}$ • Considered features:

$$- TOF N \sigma = \frac{TOF^{measured} - \langle TOF^{particle} \rangle}{\sigma_{TOF}}$$

$$dE/dx N \sigma = \frac{dE/dx^{measured} - \langle dE/dx^{particle} \rangle}{\sigma_{dE/dx}}$$

- Multiplicities in detectors
- DCA to primary vertex



PF

0.5

15

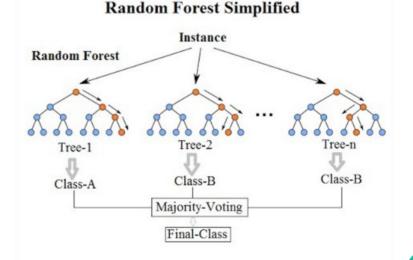
ALICE performance

3.5 4 p (GeV/c)

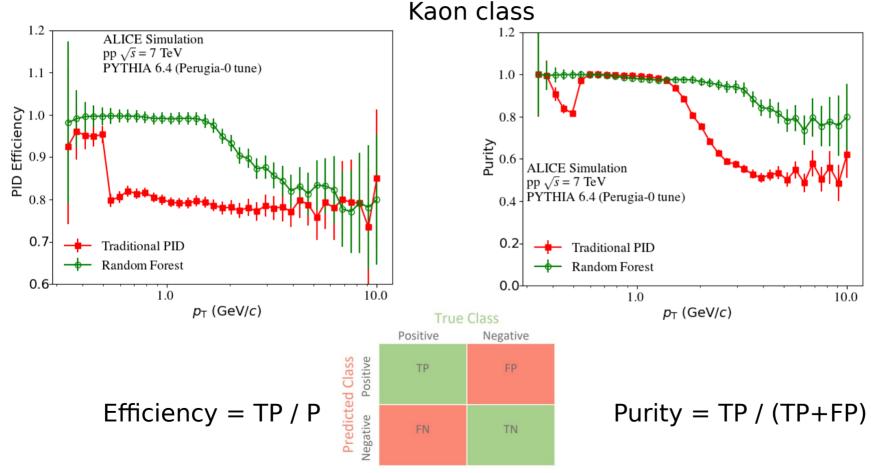
 $pp \ s = 13 \text{ TeV}$

25

- Random Forest :
 - Create Decision Trees :
 - Each decision tree → optimized on a random subset of features & only access to a random set of the training data
 - increases diversity in the forest \rightarrow more robust prediction
 - Final classification \rightarrow vote



• Results:



27/01/2023

C. Rappold - ML in Exp. physics

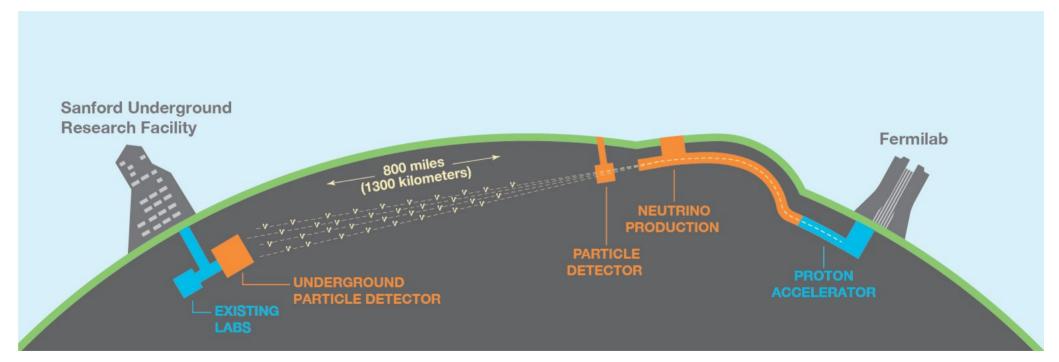
10

DL in Particle Tracking

27/01/2023

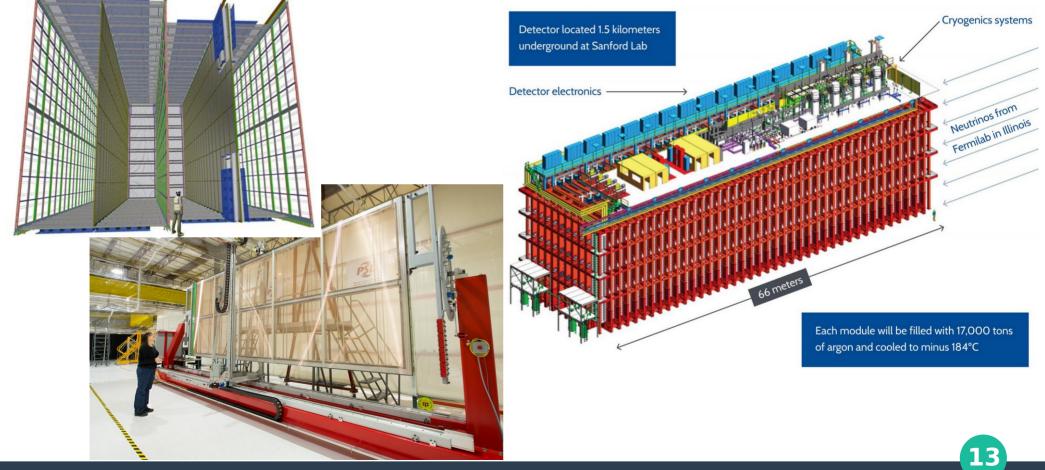
In accelerator-based neutrino oscillation experiments at Fermilab:

Proton beam (120 GeV) $\rightarrow \pi^+$ beam (10GeV) : $\pi^+ \rightarrow \mu^+ + v_\mu$



27/01/2023

The DUNE experiment: Liquid Argon TPC

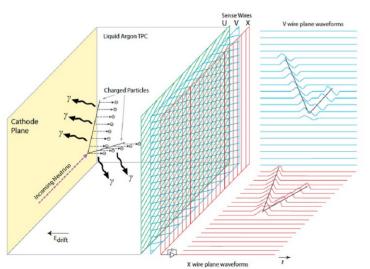


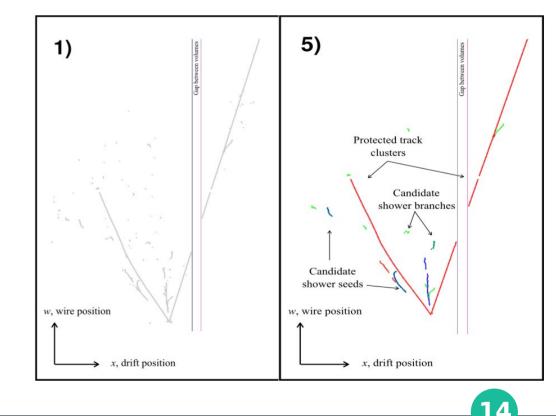
27/01/2023

- Type interaction :
 - Neutrino oscillation $v_{\mu}/\bar{v}_{\mu} \rightarrow v_{e}/\bar{v}_{e}$ Interact in LArTPC
 - Electromagnetic shower :

 $\gamma \rightarrow e^- e^+ \rightarrow \gamma \gamma \rightarrow \dots$

- Tracks (p,π,μ)





Graph neural network:

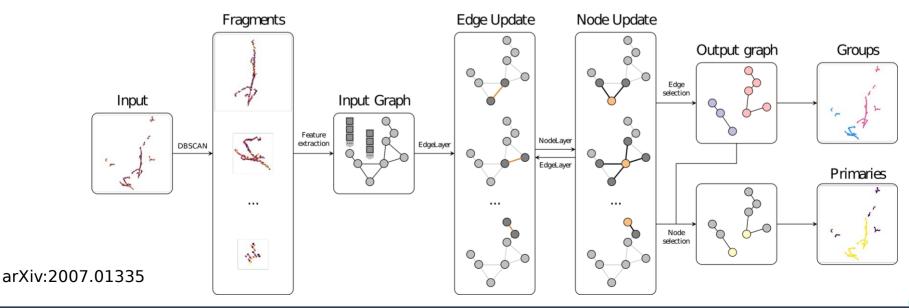
- CNN + network embedding.
 - CNN \rightarrow receptive field in local spatial features
 - Networks & graph \rightarrow generalize to arbitrary object
- CNN : conv filter \rightarrow locality / Graph : adjacency matrix \rightarrow object relationships

a

d

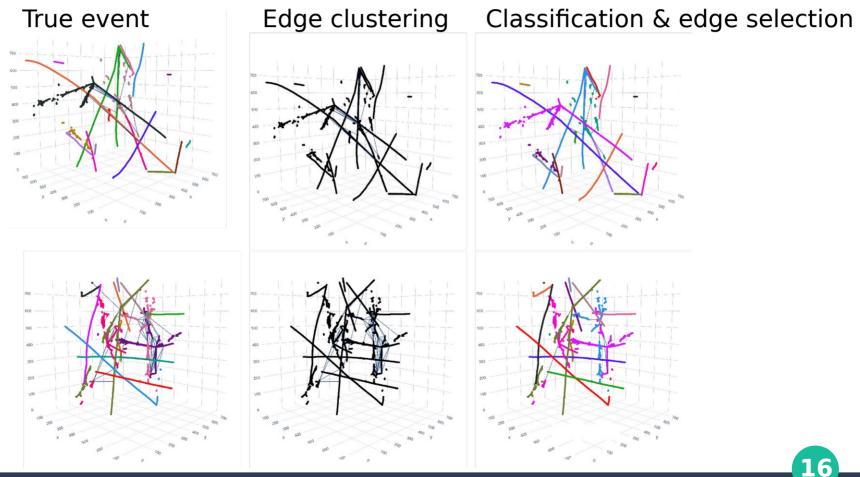
ar₀

15



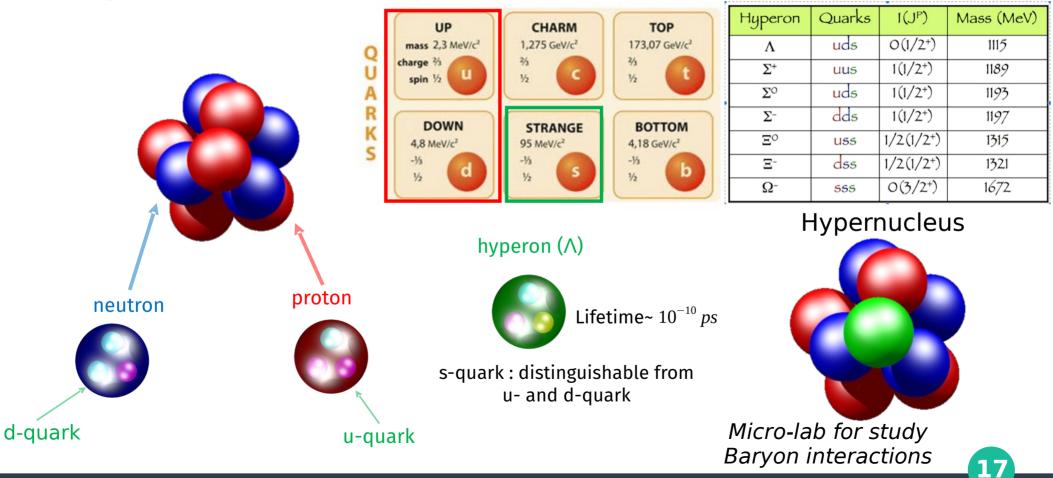
27/01/2023

Achieved efficiency and purity : > 99% !



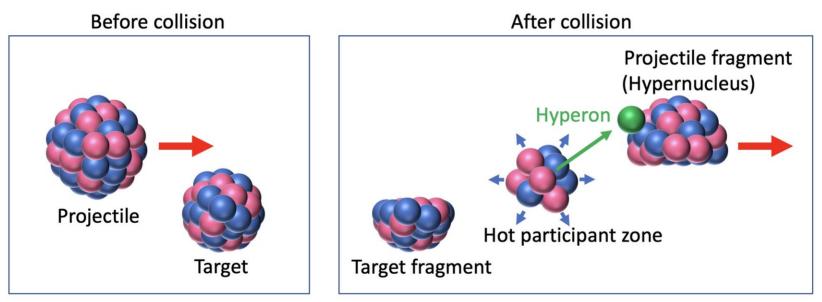
27/01/2023

Hypernuclear study:



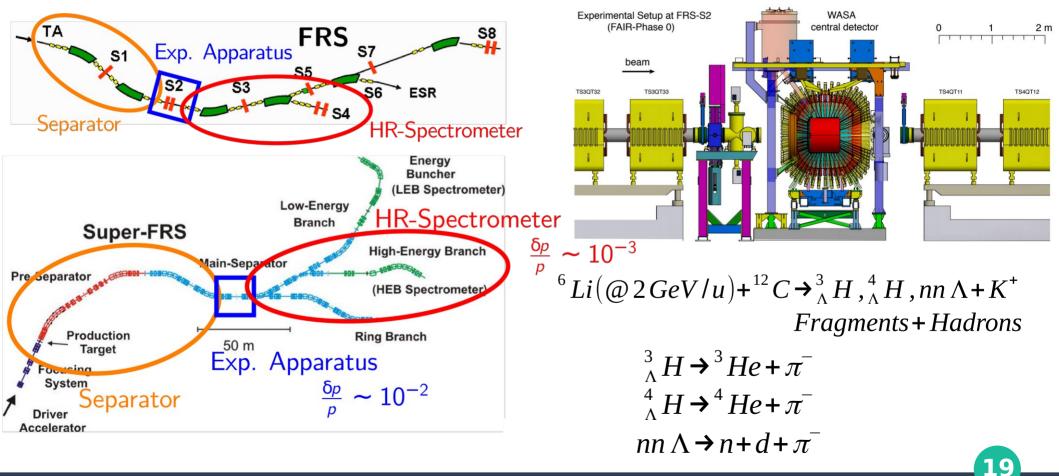
27/01/2023

- Hypernuclear production in heavy ion collisions:
 - NN → Λ KN E_{th} ~ 1.6 GeV : Beam > E_{th} : available at GSI (2 AGeV)



- Coalescence of Λ in spectator fragment
 - same velocity than projectile: Lorentz Boosted
 - study Hypernuclei in flight

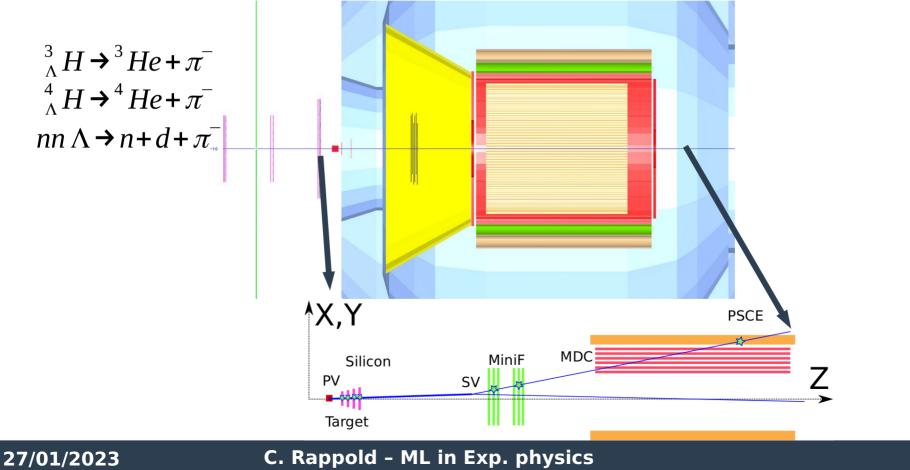
Hypernuclear study our WASA-FRS experiment:



27/01/2023

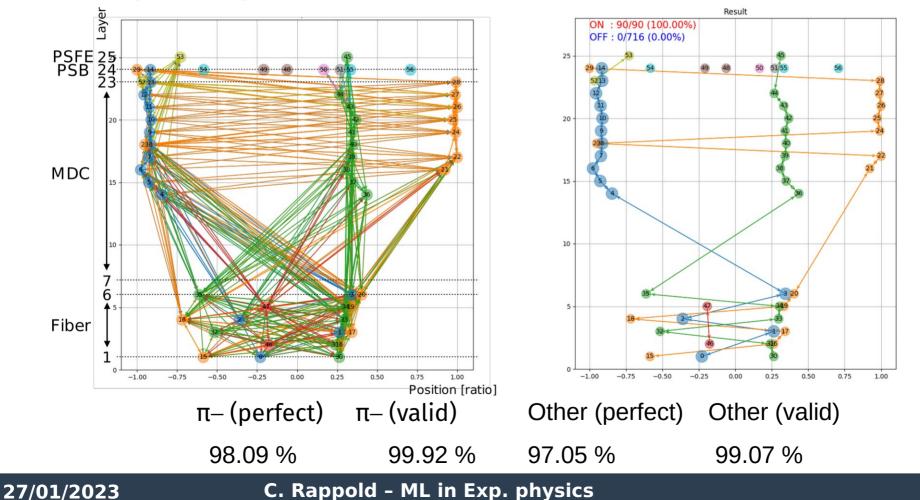
Hypernuclear study in our WASA-FRS experiment:

 $^{6}Li(@2GeV/u)+^{12}C \rightarrow^{3}_{\Lambda}H,^{4}_{\Lambda}H, nn\Lambda+K^{+}+Fragments+Hadrons$



20

Study of Hypernuclei in our WASA-FRS experiment:



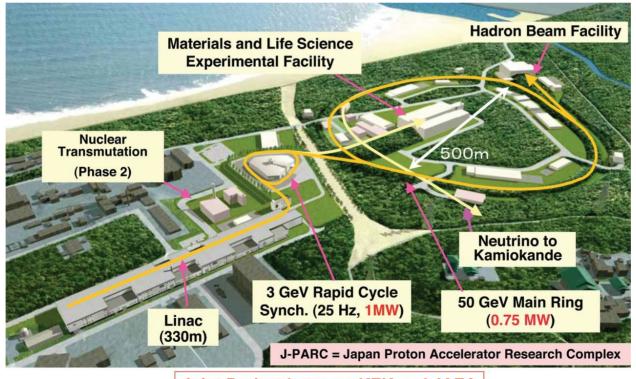
21

DL in emulsion analysis

C. Rappold - ML in Exp. physics

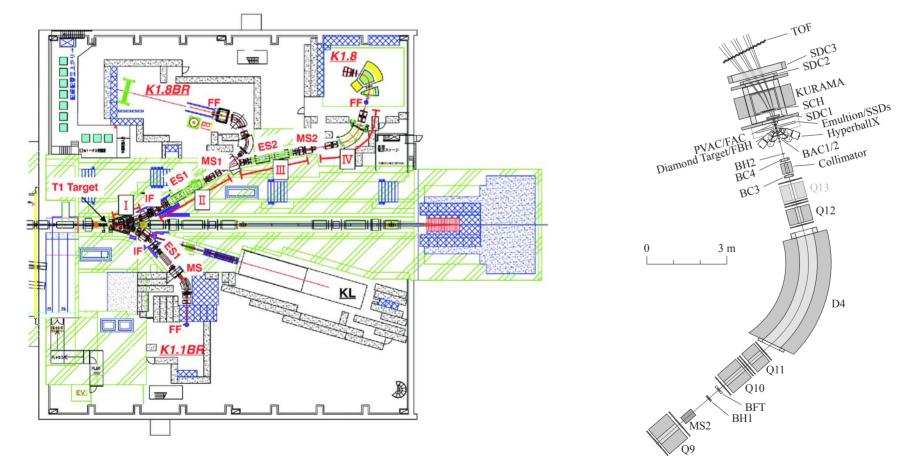
27/01/2023

- J-PARC E07 experiment :
 - J-PARC : Japan Proton Accelerator Research Complex



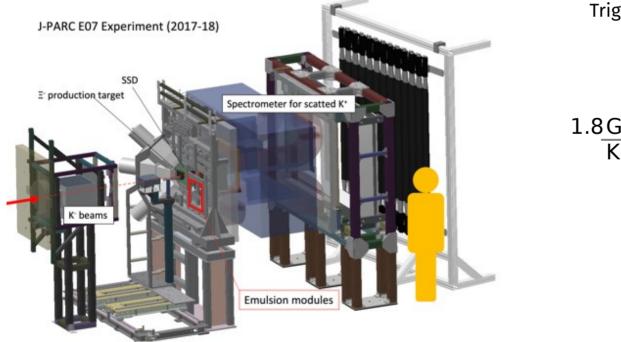
27/01/2023

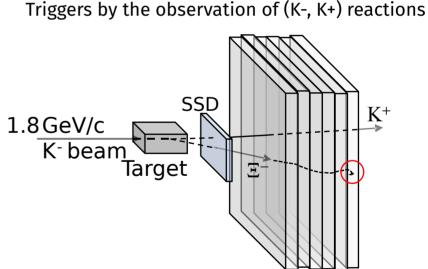
• J-PARC E07 experiment : at K1.8 beam line



27/01/2023

- J-PARC E07 experiment
 - Study of double-strangeness hypernuclei
 - Hybrid methods : Triggered detectors + nuclear emulsions

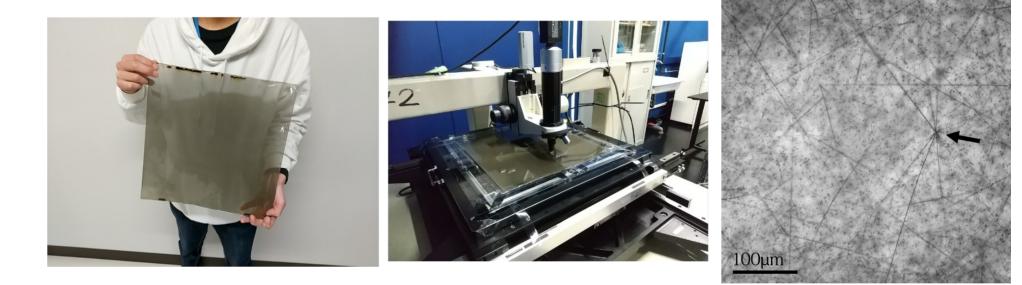




27/01/2023

• Scanning methods :

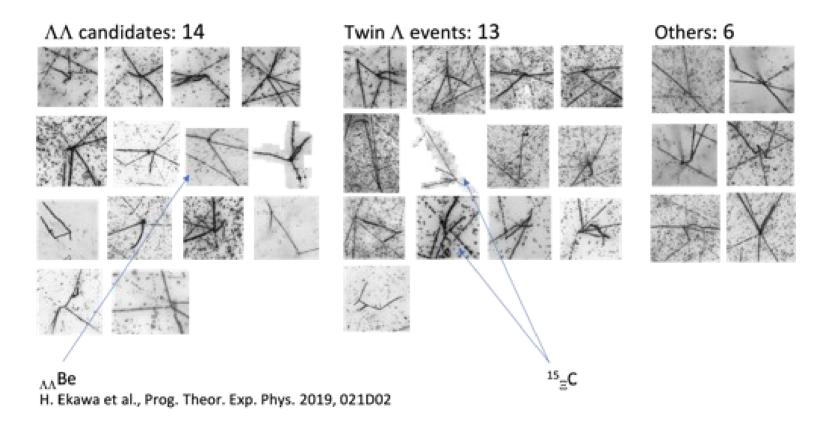
27/01/2023



Current outcome of E07:

- Triggered events : Ξ^- identified and tracked by detectors + outgoing K+ → estimation of the position of stopped Ξ^- in emulsion
- Visual inspections by an optical microscope → around the estimated stop position
- Small portion of emulsion plates analyzed → too much human workload !

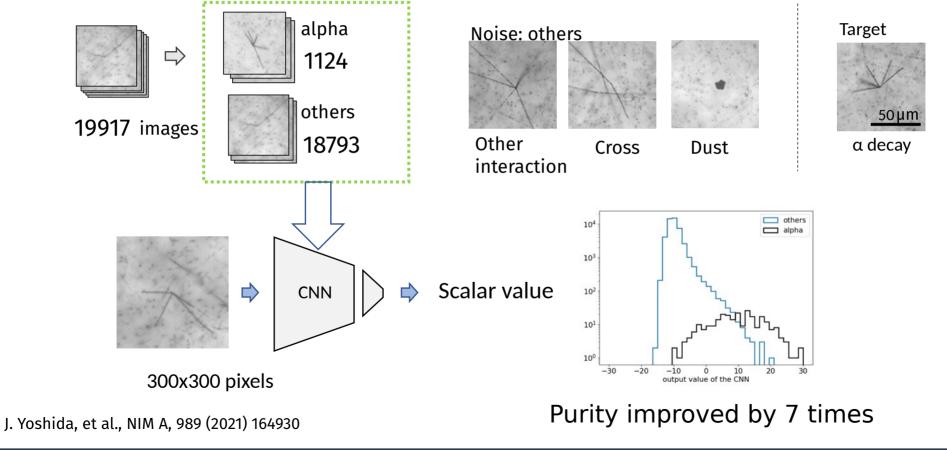
Current outcome of E07:



- Still in those 1300 emulsion plates :
 - K- beam interacted directly with the nuclei of the emulsions
 - → produce hypernuclei (single & double)
 - It was proposed to search for hypertriton $(^{3}_{\Lambda}H)$
 - But : no additional information \rightarrow need to scan everything !
 - \rightarrow 1.4 billion images / emulsion : 110 TB x 1300 \rightarrow 140 PB
 - \rightarrow 560 years to analyze this
 - Background :
 - Beam tracks & Nuclear fragmentation : 10000 & 1000 / mm^2
- Use of machine learning to find those events !
 - \rightarrow To be done in 3 years

alpha decay events (calibration) : CNN

Training data (real images)



30

27/01/2023

Alpha decay events:

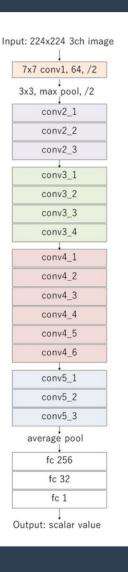
- Spontaneous decay chain of longlived radioisotopes such as uranium and thorium in the emulsion
- calibration for density / space homogeneous

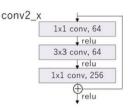
Convolutional Neural Network

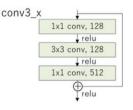
- ResNet-50

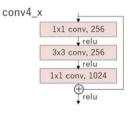
Let have a small digression for some explanations

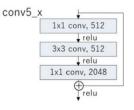
27/01/2023







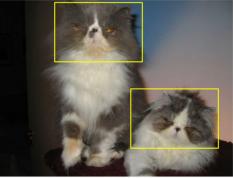




31

• What is a CNN :

 When the structure of data includes "invariance to translation", a representation meaningful at a certain location can / should be used everywhere

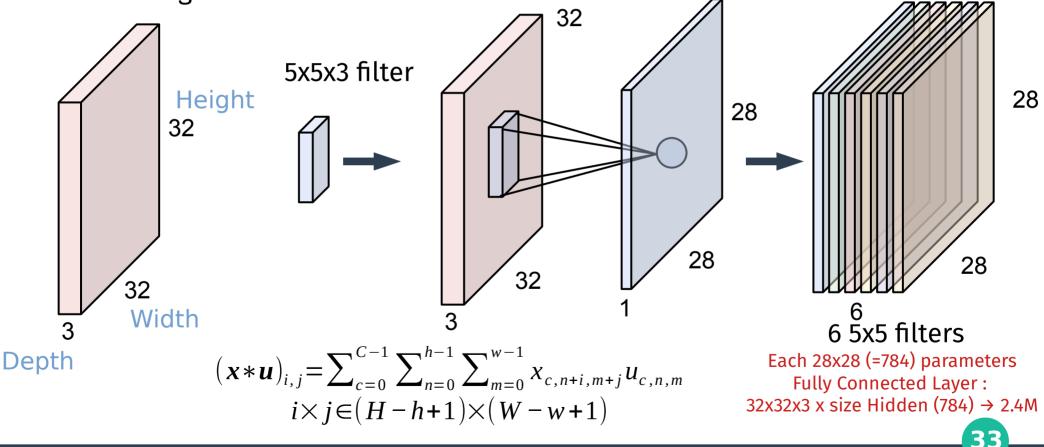


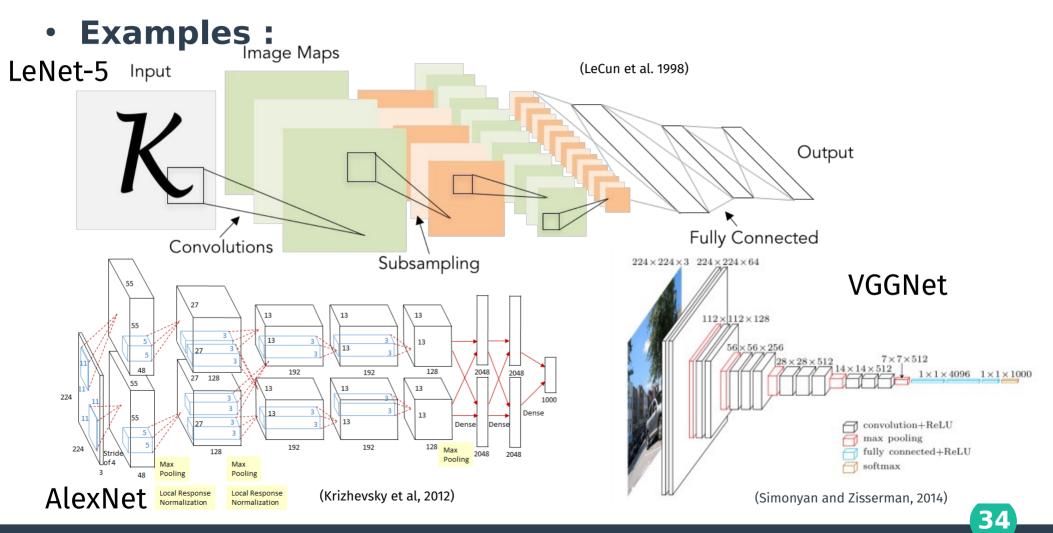
- Covolutional layers build on this idea, that the same "local" transformation is applied everywhere and preserves the signal structure
- 1D Discrete Convolution: $x \in \mathbb{R}^{M}, u \in \mathbb{R}^{n}, \forall i \in [0...M-n+1]: (x * u)_{i} = \sum_{i=0}^{n-1} x_{i+i}u_{i}$

32

- u is called Convolutional kernel of width k
- Scan across data and multiply by kernel elements

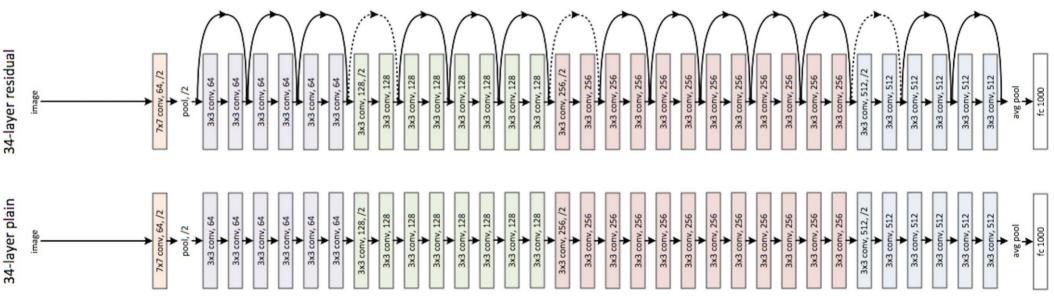
• Convolution Layer: preserve spatial structure 32x32x3 image





27/01/2023

- Back to ResNet:
 - 34 layers :



- Classics : ResNet - 18, -34, <u>-</u>50, 101, 152 (layers)

Params :25M

27/01/2023

C. Rappold - ML in Exp. physics

Params :60M

CNN classifier : Alpha decay detection

	Precision	Recall	# of candidates
Conventional method	0.081 +- 0.006	0.788 +- 0.056	2489
CNN classifier	0.547 +- 0.025	0.788	366 +- 18

- Precision = TP / TP + FP
- 7 times more precision !

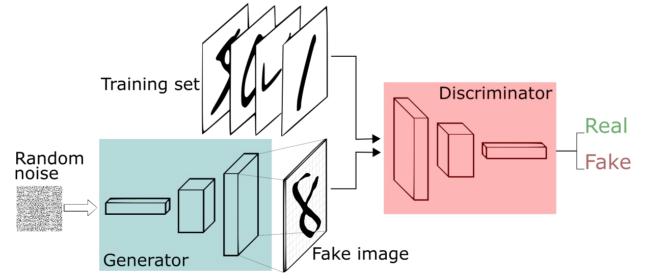
Recall = TP / TP + FN

model's ability to detect Positive samples

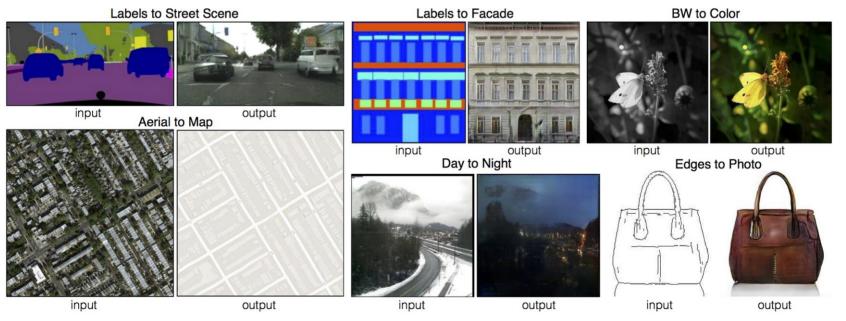
- Conventional :
 - 2489 out of 46948 events, including 201 true alpha decay
- CNN classifier:
 - 350 alpha-decay candidates, including 201 true alpha-decay
 36

• Finding hypertriton :

- Needs of training data ! But none has been found
 - \rightarrow generating event from simulations !
- Problem : how to simulate nuclear emulsion ?!
- GAN : Generative adversarial networks

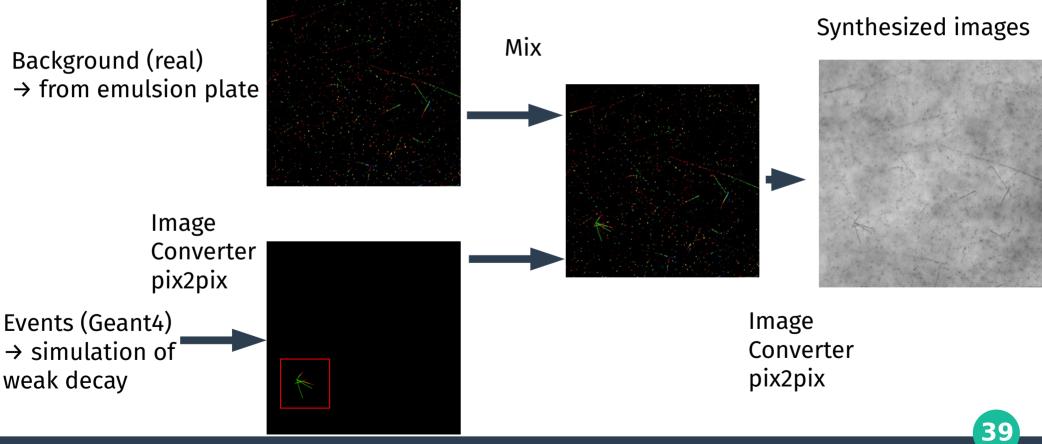


- Simulated hypertriton : GAN + Geant4
 - pix2pix (Image-to-Image Translation with Conditional Adversarial Nets)



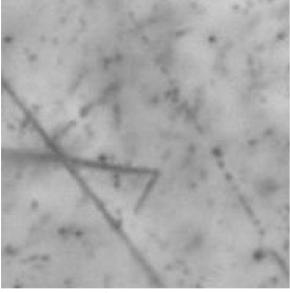
C. Rappold - ML in Exp. physics

• Simulated emulsion :

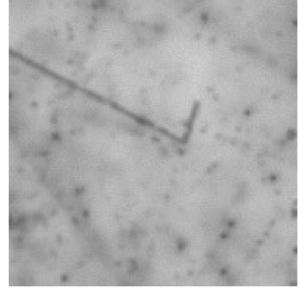


C. Rappold - ML in Exp. physics

Simulated event : hypertriton via GAN



Simulated

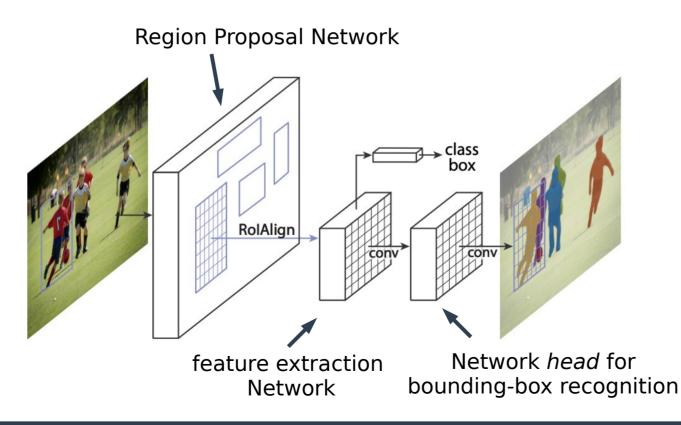


Real

- hypertriton decay at rest : ³He + π^{-} back-to-back
- Q-value fixed: length of pion 28 mm of ${}^{3}_{\Lambda}$ H vs 42 mm for ${}^{4}_{\Lambda}$ H

27/01/2023

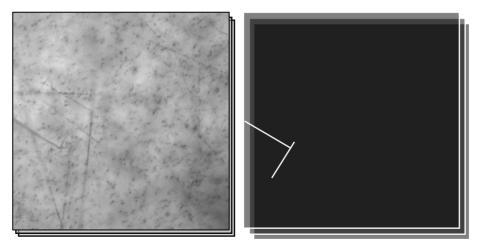
- Search for hypertriton-like decay:
 - Mask R-CNN : Instance Segmentation



Backbone architecture: Networks inside Ex: ResNet, ResNeXt, Feature Pyramid Network

41

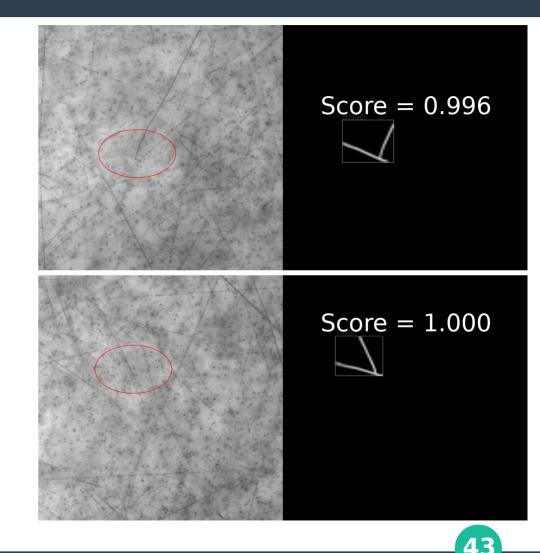
- Search for hypertriton-like decay:
 - Training on simulated and generated event
 - "Real" images of simulated emulsion
 - Masks of the instance segmentation of the decay Simulation



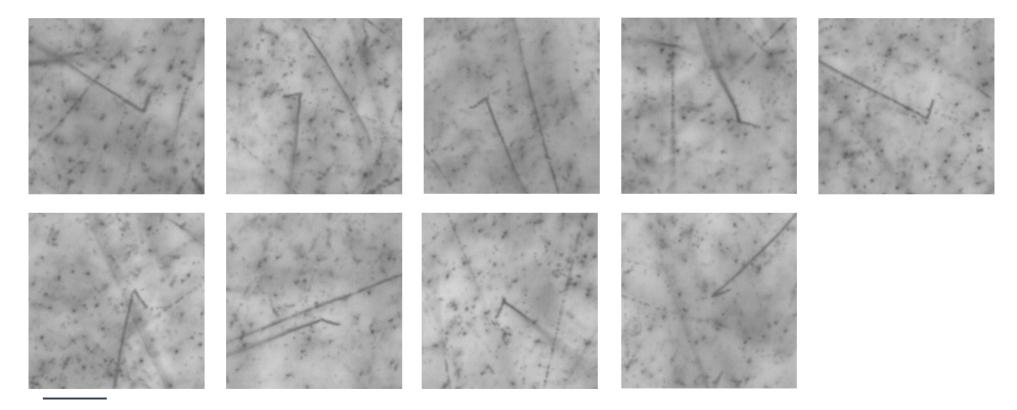
• Search for hypertritonlike decay:

- Training on simulated and generated event \rightarrow done
- Analyze the real emulsion images

→ Give us the image and and mask – bounding box of what the algorithm found :



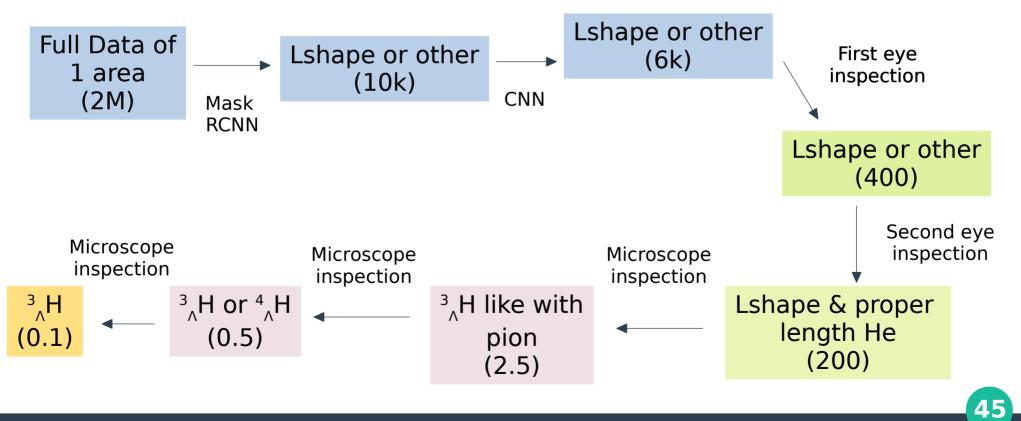
Search for hypertriton-like decay:

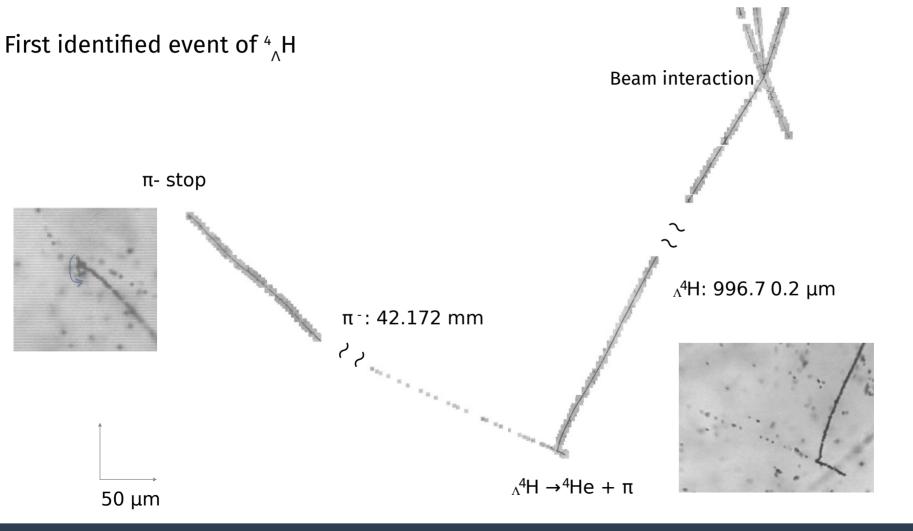


10 µm

27/01/2023

- The Mask R-CNN is not perfect :
 - Need people to cross check the dataset selected by the NN

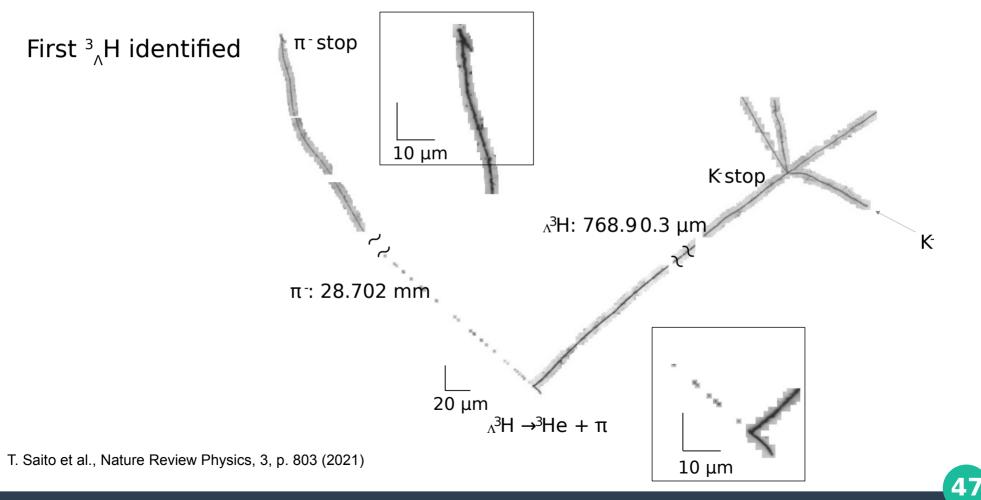




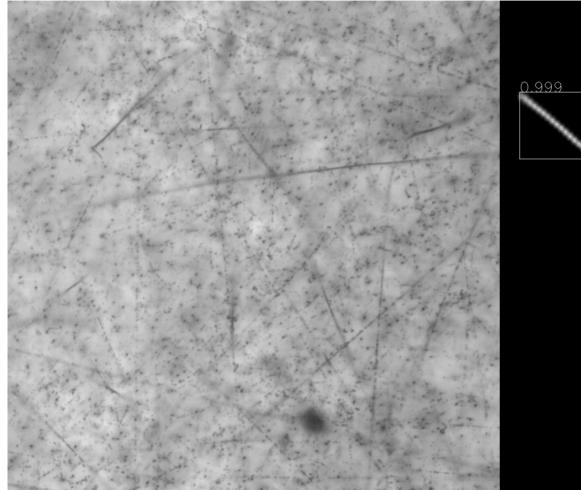
27/01/2023

C. Rappold - ML in Exp. physics

46



27/01/2023



Detected by Mask R-CNN

27/01/2023

Any questions ?