Single particle versus collectivity, shapes of exotic nuclei

Andrea Jungclaus
Instituto de Estructura de la Materia, CSIC - Madrid, Spain

The heavier neutron-rich region

Nucleosynthesis of the heaviest elements

The importance of the $N=82,126$ shell closures

Figure shown in nearly all glossy brochures for future facilities ...

Supernovae remnant Crab nebula

Site of r-process still an open question!

Merging neutron stars

On August 17, 2017 a new era started: GW170817

Abbott et al., Astrophysical Journal Letters 848:L12 (2017)

E. Pian et al., Nature 551, 67 (2017) adopted by G. Martínez-Pinedo

Gravitational waves, γ-ray burst and optical transient ("Kilonova") observed from the same source:

Binary neutron star mergers are the dominant site of r-process nuclear synthesis!

Experimental status of the ${ }^{132} \mathrm{Sn}$ region

J. Hakala et al., Phys. Rev. Lett. 109 (2012) 032501 Need many more experimental half-lives and masses!

The EURICA project at RIKEN - since 2012

The EURICA project at RIKEN - since 2012

Systematic half-life measurement in the ${ }^{132}$ Sn region

110 half-lives measured, 40 for the first time!

Production cross sections for ${ }^{238} \mathrm{U}+\mathrm{Be}$ @ 345 MeV

H. Suzuki et al./ Nuclear Instruments and Methods in Physics Research B 317 (2013) 756-768

One order of magnitude in beam intensity means 1-2 neutrons further out!

Systematic half-life measurement in the ${ }^{132}$ Sn region

G. Lorusso et al., Phys. Rev. Lett. 114, 192501 (2015)

Systematic measurements crucial to test theoretical model predictions for unaccessible regions of the nuclear chart!

The r-process solar system abundance pattern

G. Lorusso et al., Phys. Rev. Lett. 114, 192501 (2015)

New experimental half-lives
O alleviate the underproduction just below the A~130 peak and

- greatly improve the description of the rare earth element abundances.

No need for fancy explications!

Let's play with all degrees of freedom

Let's play with all degrees of freedom

The heavy-ion induced fusion-evaporation reaction

- neutron-deficient nuclei
- high spin and excitation energy
- needs heavy-ion accelerator
- many different reaction products
- large range of cross sections
- recoil velocity of reaction products $\mathrm{v} / \mathrm{c} \approx 1-5 \%$

Use highly efficient γ-ray spectrometer to explore the E_{x} vs. I plane!

Recoil velocity crucial for many techniques to measure lifetimes, moments etc.

No time to talk about all that ...

The importance of channel identification

- many different reaction products
- large dynamical range
- >1.0
- 0.1-1.0
0.001- 0.01
- 0.01-0.1
<0.0001

We need magnetic spectrometer, neutron detectors, charged particle detectors etc.

No time to talk about all that ...

The playground of fusion-evaporation reactions

Strongly populated reaction channels: High-spin physics !

Weakly populated reaction channels:
New physics at the extremes of isospin !

How high-spin physics started

Energy Resolution

Response function $=$ differential spectrum obtained with a detector when hit by monochromatic radiation

60's \rightarrow Use of Ge (Li) detectors marks the beginning of high-resolution in-beam γ-ray spectroscopy
70's \rightarrow Only few detectors, operated in $\gamma-\gamma$ coincidence. Development of the HP-Ge detector.

Use of Germanium detectors = breakthrough in nuclear structure

FWHM ~2 keV at 1.3 MeV
the european neutron source 11

Caterina Michelagnoli, 1. Lecture

How high-spin physics started

α-induced fusion-evaporation reactions - ${ }^{160} \mathrm{Gd}(\alpha, 4 \mathrm{n}){ }^{160} \mathrm{Dy}$

A. Johnson, H. Ryde \& S.A. Hjorth, Nucl. Phys. A179, 753 (1972)

The discovery of backbending!

The problem of the "wrong" moment of inertia

Det Kongelige Danske Videnskabernes Selskab Matematisk-fysiske Meddelelser, bind 30, nr. 1 Dan. Mat. Fys. Medd. 30, no. 1 (1955) dedicated to professor niels bohr on the OCCASION OF HIS 7OTH birthday

MOMENTS OF INERTIA

 OF ROTATING NUCLEIBY
AAGE BOHR and BEN MOTTELSON

„Nuclei are like egg shells which are filled with a mixture of a normal and a superconducting liquid!"

Super conductivity due to pairing forces in analogy to the Cooper pairs (electrons)
 in super conductors.

The backbending phenomenon

Possible explanations:
Mottelson-Valatin Coriolis antipairing effect coherent collapse of pairing correlations, nhase transition from the superfluid to a non-superfluid state

This work has demonstrated the feasibility of observing discrete yrast transitions of spin up to at least $30 \hbar$ in (HI, xn) reactions. Three developments have made these high spins accessible. These are (1) ${ }^{40} \mathrm{Ar}$ projectiles to bring in high angular momentum; (2) the elimination of the Doppler broadening by using thin targets and observing in the forward direction; and (3) the enhancement of a particular reaction channel using γ-ray multiplicities. The observed second discontinuity in the yrast levels of ${ }^{158} \mathrm{Er}$ around $I=28 \hbar$ may be due to several possible effects, with alignment of a second pair of particles appearing most likely to us. It will be interesting to find out whether such discontinuities are a general phenomenon and also whether there is a connection between them and the population pattern in (HI, $x n$) reactions.

Band crossings along the Yrast line

First back(up)bending corresponds to the crossing of the Stockholm band with the ground state band!

The 1980's: National arrays of HPGe detectors

Nuclear Superdeformation: A major discovery

TESSA2: 12 escape-suppressed Ge detectors at the Daresbury Laboratory (UK)

Superdeformed bands in the γ-ray continuum observed before (E2 bump).

Normal and superdeformed bands in the E_{x} vs. I plane

Moment of inertia larger for larger deformation
\Rightarrow Superdeformed rotational states energetically favoured and therefore observable at high spin !

Rotational band:

$$
E_{x}=\frac{\hbar^{2}}{2 J} I(I+1)
$$

J : Moment of inertia

$$
J_{\mathrm{SD}}>J_{\mathrm{ND}}
$$

Discovery of superdeformation in ${ }^{152} D_{86}$

How does the SD band decay?

Superdeformation as major physics discovery

"Top unexpected physics discoveries of the last five years!"

PHYSICS TODAY December 1991
High temperature superconductivity

Daniel Kleppner Lester Wolfe Professor of Physics at MIT

Atom cooling and atom optics
Large-scale structure of the universe
Supernova 1987A
Superdeformed nuclei
Buckyballs

Starting shot for the development of larger $4 \pi \gamma$-ray spectrometer!

The American Gammasphere

Total photopeak efficiency around 10% !

1993-1995 :
preliminary ($30+\ldots \mathrm{Ge}$) since 1996:
110 individual Ge
Berkeley - Argonne - Berkeley

The European EUROBALL

Total photopeak efficiency around 10% !

Three different types of detectors !

The composite CLUSTER detector of EUROBALL

1.5 kg of Ge each crystal

The European EUROBALL (1997-2004)

In operation at the LNL Legnaro (Italy) and the IReS Strasbourg (France)
$\Longrightarrow 239$ individual Ge crystals!

The decay-out in the case of ${ }^{152}$ Dy -16 years later

T. Lauritsen et al., Phys. Rev. Lett. 88, 042501 (2002)

From 1986 to 2006: >250 SD bands all over the chart of nuclei

Superdeformation in doubly-magic ${ }^{40} \mathrm{Ca}$

Superdeformation in the nuclear shell model

It is just a matter of configuration space ...

Prompt proton decay out of the $2^{\text {nd }}$ minimum

The playground of fusion-evaporation reactions

Strongly populated reaction channels: High-spin physics !

Weakly populated reaction channels:
New physics at the extremes of isospin !

The playground of fusion-evaporation reactions

Shape coexistence close to the ground state

Level scheme of ${ }^{186} \mathrm{~Pb}$

A. Andreyev et al., Nature 405,430 (2000)

$$
{ }^{142} \mathrm{Nd}\left({ }^{52} \mathrm{Cr}, 4 \mathrm{n}\right){ }^{190} \mathrm{Po}
$$

$\sigma \sim 300$ nbarn ~ 300 atoms per hour background $\sim 10^{6}$

J.L. Egido et al., Phys. Rev. Lett. 93, 082502 (2004)

Well described by mean field theory !

Shape coexistence close to the ground state

Does the strong interaction conserve isospin?

Heisenberg 1932

The strong interaction is charge symmetric and charge independent:

$$
\mathrm{V}_{\mathrm{pp}}=\mathrm{V}_{\mathrm{nn}}=\mathrm{V}_{\mathrm{pn}}
$$

Proton and neutron can be viewed as two states of the same particle: the nucleon

Study $T=1$ isobaric triplets to search for isospin breaking contributions !

Isospin concept is known to work for light nuclei

The example of the $A=54$ isospin triplet

Triplet energy differences for ${ }^{54} \mathrm{Ni}_{26}-{ }^{54} \mathrm{Co}_{27}{ }^{-54} \mathrm{Fe}_{28}$

Triplet energy difference:

Nuclear isospin-breaking (NIB) terms are of the same order as the Coulomb contributions!

The nuclear landscape - neutron-deficient side

 (with stable-beam induced fusion-evaporation reactions)

The future of γ-ray spectroscopy: Tracking arrays

EUROBALL (1997-2003)

Target view into the collimators of EUROBALL

Large fraction of dead solid angle!
Get rid of Compton-suppression shields

The idea of γ-ray tracking

Compton Shielded Ge

- scattered γ-rays lost
- poor definition of angle of incidence
- solid angle coverage limited by CS shields

Ge Tracking Array

Combination of:

- segmented detectors
- digital electronics
- pulse shape analysis
- γ-ray tracking
much improved efficiency and angle definition

Previously, scattered gammas were wasted.
Technology is available now to track them!

The tracking arrays AGATA and GRETA

60 triple clusters $=180$ crystals
360 kg of Ge
36-fold
segmentation
200 kEuro/crystal
6660 electronics channels

Caterina Michelagnoli
Lectures 2 \& 3

AGATA and GRETA will open a new era in γ-ray spectrocopy

- with stable and radioactive ion beams!

Overview and summary

Nuclear structure research in the future

Exciting new facilities and instrumentation currently under construction - very attractive perspectives.

Still enough interesting new physics to be discovered.

But: Fewer facilities, less beamtime, experiments more and more complex, data more and more precious (and expensive).

Nuclear physics became a very diverse and highly spezialized field.

It's time to rethink our way of working!

Try to get a more global view, define clear goals, set priorities etc.
Field must stay attractive for young researchers and financing agencies !

