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Nuclear fast timing: 
when the speed of light is not fast 

enough
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Nuclear lifetimes and transition strengths

➢Collective motion

➢Weisskopf estimate

Electronic fast timing

➢Experimental setup

➢Analysis method

Practical applications:

➢Perturbed Angular Correlations (PACs)

➢Time-of-Flight Positron Emission Tomography (ToF-PET)

➢Proton therapy range verification

2



Bruno Olaizola, Nuclear fast timing 33

Nuclear lifetimes and transition 
strengths
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Atomic orbitals
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Nuclear shell model
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Nuclear level scheme
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Nuclear level scheme
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Nuclear level scheme

8

• T1/2 lifetime or half-life. 
• Average time it takes for 

N nuclei (or excited 
states) to decay to 50% 
of its initial value



Bruno Olaizola, Nuclear fast timing 9

Nuclear level scheme

• Level width, Γ
• Γ=ħ/τ

K L Laursen et al 2014 J. Phys.: Conf. Ser. 569 012073
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Nuclear half-life

The activity of the 
sample changes as: A(t) 
= A0 e –λt

From λ = decay constant, 
one can define τ= 1/λ, the 
mean lifetime 

The time for half of the 
nuclei to decay is called 
the half-life:

t1/2 = ln 2 / λ = τ ln 2

N(t1/2) = N0 e –λt=N0e-ln 2=N0/2

Nuclear lifetime span over
35 orders of magnitude
(from fs to Gy)

10
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Transition strength

11

𝐵 𝑀
𝐸𝜆, 𝐿𝑖 → 𝐿𝑓 =

1

2𝐿𝑖 + 1
𝐿𝑓 𝑀 𝑀

𝐸𝜆 𝐿𝑖
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Weisskopf estimates
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Weisskopf estimates

Single particle estimates

Depend on T1/2, branching ratio, E and A 
(actually radius)

All observables that can be measured

Traditionally, T1/2 is the hardest

Strong dependence with E

➢ The lower the energy → the much longer 
the lifetime

• E1= 100 keV→ τ1= 500 ps

• E2= 200 keV→ τ2= 15 ps
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Single particles are not enough

• A transition can be described as a 
single particle (de)excitation when 
B(XL)~1 W.u.

• Very few nuclei follow this rule

• This means that we need more than 
one nucleon excitation to explain 
what is happening

• Collective motions and deformation

14
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Recommended upper limits

Atomic Data and Nuclear Data Tables 26, 1, 1981
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Recommended upper limits

Atomic Data and Nuclear Data Tables 26, 1, 1981

• By surveying a large number of transitions, RUL were proposed
• It is an orientation to assign multipolarity to transitions from 

measured B(XL)
• 40+ years old, could be outdated
• Currently being updated
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Deformation
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Collective motion
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Rotation Vibration
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Deformation is a common phenomenon

Number of neutrons
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Experimental nuclear 
fast timing
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Experimental techniques

• Nuclear lifetimes span over 35 orders of magnitude!!!

• From below femtoseconds (10-15 s) to gigayears (~1020 s, or the age 
of the Universe)

• Each time range is studied with a different experimental technique

*Under very special circumstances

21

Technique Lower limit Upper limit

Chemical separation Hours ∞*

Electronic timing 10 ps (10-12) ∞*

Doppler 10 fs (10-15) 10 ps (10-12)

Lineshape 1 fs (10-15) 100 fs (10-15)

Coulex 0* ∞*
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How short is a picosecond?

1 picosecond = 10-12 seconds

That’s 0.000000000001 seconds

It takes photons (fastest particles in the universe) ~3.3 ps to travel 
1 mm in vacuum

When working in this time frame, the speed of light cannot be 
considered instantaneous anymore

Indeed, c is one of the main limitations

23
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Simplified nuclear electronic timing

24
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Signals

25

Technical Report for the Design, Construction and Commissioning of FATIMA, the FAst
TIMing Array

Semiconductor
Scintillator
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Constant faction discriminator

26

Wikicommons
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Electronics

27

CFD

CFD

γ2

γ1

Start

Stop

TAC
Δt

• CFD: constant fraction 
discriminator

• TAC: Time to amplitude 
converted
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Time walk

Time difference between β and γ [ns]



Bruno Olaizola, Nuclear fast timing 29

Time walk

Time difference between β and γ [ns]
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Bonus question

Time difference between β and γ [ns]
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Long lifetime

Time difference between β and γ [ns]



Bruno Olaizola, Nuclear fast timing 32

Measuring gamma-rays

• Scintillators (like LaBr3(Ce)) are the fastest detectors nowadays

• The incident photon excites the crystal molecules

• They quickly de-excite emitting UV

• The electrons from the photoelectric effect give us the signal

• Photoelectric effect is more likely with UV rays

32
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Timing resolution
Timing resolution is the time-
width of a prompt (t~0 ps) signal

Scintillators crystals are a few cm 
long and wide

Light takes time bouncing inside 
the crystal

Timing resolution mainly 
depends on crystal size

33
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Convolution method

• Prompt part may be approximated to a Gaussian shape, down to 3 orders of 
magnitude

• Slope method may be used for T1/2 ~ timing resolution

• Fit of the timing distribution to a prompt response plus an exponential 
decay

• 𝐹 𝑡𝑗 = 𝛾 𝐴
+∞

𝑒−𝛿(𝑡𝑗−𝑡)𝑒−λ(𝑡−𝐴)𝑑𝑡

34
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Centroid shift method

35

2+ state in 200Hg
T1/2(literature)=46.4(4) ps
T1/2(experiment)=44(3) ps

200Hg
0+

2+

4+

T1/2
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The centroid of the time distribution will be given by:

C = τ
0
+τ

START
+τ

STOP
+τ

level

τ
0
=a constant delay of the setup, cannot be determined 

(in general)

τ
START

= time walk of the START detector (depends on the 

measured energy)

τ
STOP

= time walk of the STOP detector (depends on the 

measured energy)

τ
level

= Lifetime we want to measure

Thus, if we calibrate the walk of our detectors, we can do 

a centroid shift to cancel τ
0

C1 = τlevel+τ0+τWALK(γ1)
C2 = -τlevel+τ0+τWALK (γ2)

ΔC=C1-C2=(τWALK(γ1)-τWALK(γ2))+2τlevel

ΔC=2τlevel+PRD(ΔE)

START

STOP

STOP

START

τlevel

C1
C2

Generalized centroid difference method
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Relative PRD calibration curve

• Timing response 
calibration

• 152Eu commercial source
• Lifetimes are precisely 

measured
• Values are corrected by 

the literature lifetimes
• Uncertainty ~5 ps for the 

overwhelming Compton 
background
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Compton correction

ATCT= APCP+ ACCc

CP=
ATCT−ACCc

𝐴𝑇−𝐴𝐶
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Practical applications:
Perturbed Angular Correlations
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Multipole radiation

40

Monopole

Quadrupole

Octupole
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PAC Spectroscopy

41

(www.uni-leipzig.de)

γ - γ angular correlation
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Perturbed angular corellation

42

Now if the electric/magnetic field is created by 

other atoms in a molecule then the Perturbed γ

- γ angular correlation is a very sensitive probe!

(www.uni-leipzig.de)

• This technique requires detectors with good 
energy resolution and excellent timing 
resolution.

• LaBr3 scintillators are the ideal choice.
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PAC Spectroscopy reveals coordination chemistry

43
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Radiopharmaceuticals

44

Radionuclide

Chelator

Biomolecule

Specific target

Desire is to place the radionuclide in a carrier molecule which 
will deliver it directly to the target cancer cells. Can dream of 
“Designer molecules”
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Targeted Radionuclide Therapy (TRT)

45

• Pouget J.-P. et al. (2011) Clinical 
radioimmunotherapy—the role of 

radiobiology Nat. Rev. Clin. Oncol. 
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PAC Spectroscopy characterizes protein-protein interactions

46

Wernimont et al. Nature Structural Biology  7, 766 - 771 (2000)

The metal ion binding site changes with pH level
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Practical applications:
PET-TOF
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Positron-electron annihilation

• Positron (e+) is the anti-particle of the electron

• If they touch, they annihilate E=mc2

• Mass of e-/e+ is 511 keV/c2

• Momentum conservation, two 511-keV photons are emitted is 
opposite directions

48
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18O(p,n)18F

p+

18O18Fn

Glucosa

 = 0

LOR

 =  0

LOR

Positron Emission Tomography (PET)

Courtesy of K. Abushab UCM-Spain

Positron Emission Tomography (PET)
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Positron Emission Tomography (PET)
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PET – Time of Flight (ToF)

51

t1

t2

t2-t1
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Increased resolution

52

GFN-UCM
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Practical applications:
Proton therapy range verification
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Bragg curve

54
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Protontherapy

55
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Range verification

56

C Burbadge et al 2021 Phys. Med. Biol. 66 025005
1- No peaks → proton energy too low

• We insert a metal foil (Mo) in front of the tumor
• Nuclear reaction with p+ emits characteristic gamma rays
• Ratio between peaks depends on p+ energy 

2- Good peak ratio→ Bragg peak next metal 
marker, correct energy

3- Wrong peak ratio→
Bragg peak beyond metal 
marker, too high energy
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Range verification

57

Protons stop before metal foil

No nuclear reaction

Only tissue background
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Range verification

58

Bragg peak at the metal foil

Maximum proton energy induces nuclear reaction

Characteristic gamma ray appears
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Range verification

59

Bragg peak beyond the metal foil

Only partial proton energy induces nuclear reactions

Different gamma peak ratio
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Range verification

Interaction of p+ with tissue will create large gamma-ray fields 

Rates on the detectors well over 50 kHz

Requires extremely fast detectors, such as LaBr3

The technique allows for online range verification

Sub-mm precision achieved

60

C Burbadge et al 2021 Phys. Med. Biol. 66 025005
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Summary

• Lifetime measurement is one of the most 
powerful probes we have to study nuclear 
structure

• Scintillators allow to measure timing down to 
~10 ps (10 x 10-12 s)

• The fast-timing method has practical 
applications:

• Protein structure and interaction

• Medical imaging (PET-ToF)

• Proton therapy range verification

61
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Any questions?

You can always contact me at 
bruno.olaizola@csic.es
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Pile up

63
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PAELLA at TRIUMF

64

Perturbed Angular corrELations Labr Array
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𝐵 𝑀
𝐸𝜆, 𝐿𝑖 → 𝐿𝑓 = 

𝜇𝑀𝑓

𝐼𝑓𝑀𝑓 𝑀 𝑀
𝐸𝜆, 𝜇 𝐼𝑖𝑀𝑖
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