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In experimental science we try to draw some conclusions on a theoretical
construct (model, hypothesis, parameter,...) from the results of one or
more experimental measurement:

« Experimental results are uncertain (i.e. the repetition of the same
experiment gives different numerical results; different experiments give
different results): how can we then characterize experimental data?

* How can we then infer something from data?

% deductive inference \@

MODEL <E> MEASUREMENT <E> DATA
HYPOTHESIS

\\ inductive inference /
PROBABILITY

This sounds a bit philosophical
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Abstract

*Philosophy has been defined as "an unusually obstinate attempt to think clearly”; | should define it rather
as “an unusually ingenious attempt to think fallaciously”.... The more profound the philosopher, the more
intricate and subtle must his fallacies be in order to produce in him the desired state of intellectual
acquiescence. That is why philosophy is obscure.” (B. Russell [1]).

On the basis of some examples discussed in detail, we examine some general statements, put forward by
philesophically-minded physicists, to see if they are applicable to practical problems met in counting
statistics and are of help in solving them. The outcome of this comparison, although admittedly based on a
restricted sample, indicates that thought alone, even if it appears to be general, is nearly always too narrow
in scope. The complex, and usually incompletely known, structure of a physical situation is too easily
misconceived by a seemingly straightforward generalization. If an essential, but perhaps hidden, aspect
has been overlooked, the model is inappropriate and deductions based on it are of no value. Physicists
therefore seem well advised to mistrust arguments advanced with the claim that they are based on general
reasening. Philosophical conclusions — if one cannot resist drawing them — should be the outcome of
serious physical investigations, both experimental and theoretical, rather than their starting point.
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We want to answer these questions:

How should we quantify the uncertainty on the measurement
of certain parameter?

How this uncertainty depends on other parameters used to
obtain the result?

If several parameters are obtained simultaneously from the
same data how are their values correlated ?

Do the results show a trend deviating from the expected ?
How should we design a measurement in order to minimize
uncertainties?



Vocabulary: uncertainty, error, precision, accuracy

The repetition of a measurement under the same conditions usually
leads to different outcomes: uncertainty incertidumbre
The difference between measurement result and “true” value: error

If the conditions were really the same, the variations of the result can be
related to the statistical nature of physical processes: statistical
uncertainty (quantifiable)

If the conditions were actually varying between measurements (but this
fact was unknown to us): systematic uncertainty (unknown)

If the measurement was faulty this could introduce a bias in the result:
systematic deviation (unknown)

If the result of the measurement depends on not so well known
parameters: systematic uncertainty (quantifiable)

We are assuming that the measurement has enough precision to allow
distinguishing these variations precision

The accuracy on the other hand measures the deviations of the
measured value from the true value “exactitud”
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Examples of primary questions in NP and PP experiments :

» determine the amount of a radioactive isotope on a sample
 determine the half-life of a nuclear level or a particle

» determine the momentum distribution of certain reaction products
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In nuclear and particle physics we are dealing with counting experiments:
we register the number of counts in a given detector, produced by particles
of a given type at a given time with a given momentum and under some
other conditions. From this and other detector related information we obtain

the requested data.



Some mathematical tools:

Random variables:
X, Y, ... represent variables (a certain magnitude)
{xi}, {y;}, ... different values (the values it can take)

Probability density function (PDF):
P(x), P(y), P(x,y), ... probability of obtaining x;, or y,, or x; and v,
simultaneously

Discrete: x4, X5, ... = Z (e.g. number of events)
Continuous: x €dx — [ (e.g. momentum of a particle)
Probability:

A function of the random variable which fulfill:

1) P(x)=0, 2) f P(x)dx =1, 3)P(x;),P(x,)indep.



Expected value of a function of the random variables:
E[f]= f f(x,v,..)P(x, v,..)dxdy...

Moments of the distribution:
algebraic: E|x“y'...]
central: E[(x — E|x)f (x- E|x)) ]

mean: Xx-= E[x]= f xP(x,y,...)dxdy... promedio

variance: Of =F [(x - )_6)2 ]= f (x - )_c)zP(x, V,...)dxdy... varianza

skewness : y = I x=Xx) P(x, y,...)dxdy... Sesgo
0_3

kurtosis: £+3= 14 f(x — )?)4P(x,y,...)dxdy... kurtosis
(0

X



median: the value that separates the probability distribution
In two halves... mediana

covariance: o, = E|(x-x)y- y)]=f(x ~x )y -¥)P(x, y...)dxdy...

correlation: p =—

x and y are independent if P(x,y)=P(x)P(y) = o,=0
X and y are uncorrelated if 6, =0 = independent

confidence interval /a,b] and confidence level a

a =}a’x f P(x, v,..)dydz...



* Probability that out

x disintegrate in a time interval At

Binomial distribution

of N particles

* Probability that if there are n_n,
collisions there are x reactions

X = &’_JAtN X = nanb%
p 0
X : success, N : trials, p : probability p
N' N-x
P(x) = (1= = B(,
)’ (1-p)"™" =B(N, p)
X =Np The basic distribution of
5 | counting experiments
o’ =x(1- p)
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Binomial PDF (P=0.1, N=100)
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Poisson distribution

» Limiting case of binomial distribution when N >> and p<<

X : success, N : trials, p : probability

u = Np:.mean
uo_
P(x) = ik # = P(/,t)
X!
X =U
o’ =u < The distribution used in NP
& and PP counting experiments
1 <8
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Poisson PDF(LAMBDA =15)
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Multinomial distribution

* Related to classification problems as histograms: probability
that out of N events x, are of type 1, x, are of type 2, ...

X, X, ... . events of type 1, 2, ...
N : trials
P, P - . probability of types 1, 2, ...

Multinomial:

N!
P(x,,x,,...) = -
x!1x,0...
X; = Npi
Oiz =pz(1_pi) Qg;\?’
@)
= _Npipj 0\%

Poisson distribution

plx1 pzx2 e = M(N, pl,pz,...) for each channel

with or without
correlations

M(Na P> P> ) = P(MIP)(P]E]I% )




Normal or Gaussian distribution

» Appear as a consequence of the Law of Large Numbers. Good
approximation of Binomial or Poisson distribution for large u=~Np

u: mean, o: width

1 _l(x_“)z
2 02 -
- -N0o)
; 000‘5
A
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The most ubiquitous
distribution in experimental
science
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Binom(48, 0.25) ——

Norm(12,3) ——

Good approximation of
Binomial or Poisson when
Np or u =~10

Interval | Probability

-10,+10 68.2%
-20,+20 95.4%
-30,+30 99.6%
-40,+40 99.8%




Central limit theorem

¥ The mean value calculated from a subset of a sufficiently large
number of random samples will be approximately normally
distributed

¥ The PDF of the sum of independent random variables is the
convolution of the individuals PDF. The convolution of a large
number of PDF tends to the normal distribution



































































































