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In experimental science we try to draw some conclusions on a theoretical 
construct (model, hypothesis, parameter,…) from the results of one or 
more experimental measurement: 
•  Experimental results are uncertain (i.e. the repetition of the same 
experiment gives different numerical results; different experiments give 
different results): how can we then characterize experimental data? 
•  How can we then infer something from data? 

MODEL 
HYPOTHESIS 

MEASUREMENT DATA 

inductive inference 

deductive inference 

PROBABILITY 

STATISTICS 

This sounds a bit philosophical 





We want to answer these questions: 
•  How should we quantify the uncertainty on the measurement 

of certain parameter? 
•  How this uncertainty depends on other parameters used to 

obtain the result? 
•  If several parameters are obtained simultaneously from the 

same data how are their values correlated ? 
•  Do the results show a trend deviating from the expected ? 
•  How should we design a measurement in order to minimize 

uncertainties? 



• The repetition of a measurement under the same conditions usually 
leads to different outcomes: uncertainty

• The difference between measurement result and “true” value: error
• If the conditions were really the same, the variations of the result can be 

related to the statistical nature of physical processes: statistical 
uncertainty (quantifiable)

• If the conditions were actually varying between measurements (but this 
fact was unknown to us): systematic uncertainty (unknown)

• If the measurement was faulty this could introduce a bias in the result: 
systematic deviation (unknown)

• If the result of the measurement depends on not so well known 
parameters: systematic uncertainty (quantifiable)

• We are assuming that the measurement has enough precision to allow 
distinguishing these variations

• The accuracy on the other hand measures the deviations of the 
measured value from the true value

Vocabulary: uncertainty, error, precision, accuracy
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In nuclear and particle physics we are dealing with counting experiments: 
we register the number of  counts in a given detector, produced by particles 
of a given type at a given time with a given momentum and under some 
other conditions. From this and other detector related information we obtain 
the requested data. 

Examples of primary questions in NP and PP experiments : 
•  determine the amount of a radioactive isotope on a sample 
•  determine the half-life of a nuclear level or a particle 
•  determine the momentum distribution of certain reaction products 
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Some mathematical tools: 

Random variables:  
x, y, … represent variables          (a certain magnitude) 
{xi}, {yi}, … different values        (the values it can take) 

Probability density function (PDF): 
P(x), P(y), P(x,y), … probability of obtaining xi, or yi, or xi and yi       
simultaneously 

Discrete: x1, x2, … → Σ           (e.g. number of events) 
Continuous: x  ∈ dx  → ∫         (e.g. momentum of a particle) 

Probability: 
A function of the random variable which fulfill:  
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Expected value of a function of the random variables: 
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x and y are independent if  P(x,y)=P(x)P(y)  ⇒  σxy=0 
X and y are uncorrelated if σxy=0  ≠ independent 

confidence interval [a,b] and confidence level α 
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median: the value that separates the probability distribution 
in two halves… mediana 



Binomial distribution 

•  Probability that out of N particles 
x disintegrate in a time interval Δt 

•  Probability that if there are nanb 
collisions there are x reactions 
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The basic distribution of 
counting experiments 





Poisson distribution 

•  Limiting case of binomial distribution when N >> and p<< 
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The distribution used in NP 
and PP counting experiments 
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Multinomial distribution 

•  Related to classification problems as histograms: probability 
that out of N events x1 are of type 1, x2 are of type 2, … 
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Normal or Gaussian distribution 

•  Appear as a consequence of the Law of Large Numbers. Good 
approximation of Binomial or Poisson distribution for large µ=Np 
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The most ubiquitous 
distribution in experimental 
science 





Good approximation of 
Binomial or Poisson when 
Np or µ ≥ ~10 

Probability 
integrals 

Interval Probability 
-1σ,+1σ	

 68.2% 
-2σ,+2σ	

 95.4% 
-3σ,+3σ	

 99.6% 
-4σ,+4σ	

 99.8% 



Central limit theorem 
 
¥! The mean value calculated from a subset of a sufficiently large 

number of random samples will be approximately normally 
distributed 

¥! The PDF of the sum of independent random variables is the 
convolution of the individuals PDF. The convolution of a large 
number of PDF tends to the normal distribution 


































































