INSTITUT LAUE LANGEVIN

Nuclear Structure studies using high-resolution techniques

Caterina Michelagnoli

20/01/2023

THE EUROPEAN NEUTRON SOURCE

Table of contents

- Introduction: main challenges in Nuclear Physics, why γ spectroscopy
 Nuclear Structure and Astrophysics
- Why high resolution and how
 Proceed Proceed Processing Provided the processing of the processing of the process of the proceses of the process o
- Advanced γ-ray tracking
 Pasics
 The AGATA project

(Main) bibliography of today's lecture

P. Ring and P. Schuck "The Nuclear Many Body problem"

P. J. Nolan and J. F. Sharpey-Schafer, Rep. Prog. Phys. 42, 1 (1979) "The measurement of the lifetimes of excited nuclear states"

J. Suhonen "From Nucleons to Nucleus: Concepts of Microscopic Nuclear Theory"

L.W. Fagg and SS. Hanna, Rew. Mod. Phys. 31, 711 (1959) "Polarization measurements on nuclear γ rays"

J.K. Smith et al., Nucl. Instr. Meth. A922 (2019) 47 " $\gamma\gamma$ angular correlation analysis techniques with the GRIFFIN spectrometer"

- D. Reygadas, PhD Thesis, Univ. Grenoble-Alps, 2021
- G. Bocchi, PhD Thesis, Univ. Milano, 2015

Introducing my lectures...

Scope : showing you (main) challenges and technologies in high-resolution Nuclear Structure, from and **experimentalist** point of view...

... through a "personal taste and experience"-biased selection of examples

In-beam γ-ray spectroscopy

The "check-list" of detection requirements, Eg ~ 10keV – 10MeV

Energy resolution, to disentangle complex spectra \rightarrow germanium detectors

Peak-to-Total ratio, to maximize "good events" \rightarrow Compton background suppression

Doppler-correction capabilities,

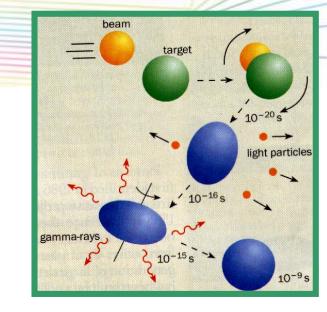
to compensate the Doppler broadening (emitting nucleus in motion)

Good solid angle coverage,

to maximize the efficiency

Good granularity,

to reduce multiple hits on the detectors, measure angular distributions/correlations



In-beam γ -ray spectroscopy

The "check-list" of detection requirements, Eg ~ 10keV – 10MeV

Avoid dead materials,

to avoid radiation absorbtion and preserve low energies

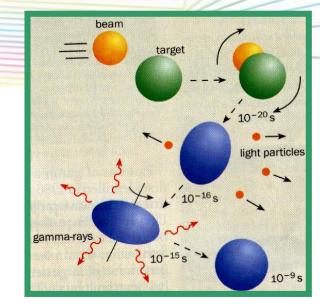
High counting rate capability,

often the channel of interest is (much!) less strong than the bakground

Time resolution, for prompt events selection, lifetime measurements

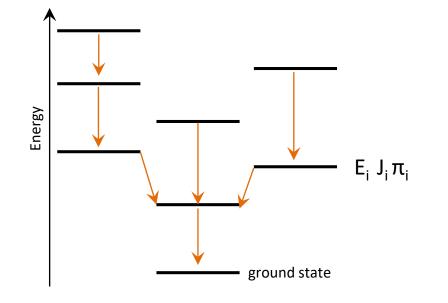
Possibility to couple with ancillary devices,

to improve selectivity, determine velocity vector, ...



The structure of the nucleus

Low-energy (<~10-15MeV) nuclear states



Observables: Measuring γ -ray: \checkmark energy levels (E_i) √energy √spin (J_i) √angular distribution \checkmark linear polarization $\sqrt{\text{parity}(\pi_i)}$ \checkmark energy Doppler shift √lifetime (for example) (transition probabilities) (τ_i) \checkmark angular distribution vs t

populate in excited state(s) and observe γ -ray de-excitation radiation

y-ray spectroscopy is an approach for the study of nuclear structure

 \checkmark nuclear moments (g-factors)

- \checkmark systematics (e.g. shape transitions)
- benchmarks for nuclear models (e.g. Nuclear Shell Model)

Transition probability and multipolarity

E

$$\Gamma$$

 ψ_i initial excited state
Energy carried off
In transition
 ψ_f final state at lower energy

E or M transition probability ("golden rule"):

$$T_{fi}^{(\sigma\lambda\mu)} = \frac{2}{\varepsilon_0 \hbar} \frac{\lambda + 1}{\lambda[(2\lambda + 1)!!]^2} \left(\frac{E_{\gamma}}{\hbar c}\right)^{2\lambda + 1} |\langle \xi_f J_f m_f | \mathcal{M}_{\sigma\lambda\mu} | \xi_i J_i m_i \rangle|^2$$

 σ = E, M μ = magnetic substate

 $J_f = J_i \square EO$ (internal conversion)

$$\Gamma \tau = \hbar$$
 $\Gamma \propto |\langle \psi_f | \hat{O}_{decay} | \psi_i \rangle|^2$

If different decay modes (j): $\Gamma_{total} = \sum_{j} \Gamma_{j}$

transition probability (per unit time):

$$\tau_{\gamma} = \frac{T_{1/2}}{ln\,2} = \frac{1}{T_{if}} \qquad \tau = \tau_{\gamma} \frac{I_{\gamma}}{I_{tot}} \label{eq:tau_state}$$

 I_{γ} = intensity of the transition with given multipolarity λ

$$\begin{aligned} |\mathbf{J}_{f} - \mathbf{J}_{i}| < \lambda < |\mathbf{J}_{i} + \mathbf{J}_{f}| \\ -\lambda < \mu < \lambda \\ \pi_{f} = (-1)^{\lambda} \pi_{i} \quad \sigma = \mathbf{E} \\ \pi_{f} = (-1)^{\lambda+1} \pi_{i} \quad \sigma = \mathbf{M} \end{aligned}$$

Reduced transition probabilities

Averaging on initial magnetic substates and summing over all final ones :

$$\begin{split} T_{fi}^{(\sigma\lambda)} &= \frac{1}{2J_{i}+1} \sum_{m_{i} \mu m_{f}} T_{fi}^{(\sigma\lambda\mu)} & B({}_{E}^{M}\lambda;I_{f} \rightarrow I_{i}) = \frac{2I_{i}+1}{2I_{f}+1} B({}_{E}^{M}\lambda;I_{i} \rightarrow I_{f}) \\ &= \frac{2}{\varepsilon_{0}\hbar} \frac{\lambda+1}{\lambda[(2\lambda+1)!!]^{2}} \left(\frac{E_{\gamma}}{\hbar c}\right)^{2\lambda+1} B(\sigma\lambda;\xi_{i}J_{i} \rightarrow \xi_{f}J_{f}) \\ & \text{Reduced transition probability} \quad [B(E\lambda)] = e^{2}fm^{2\lambda}, \quad [B(M\lambda)] = (\mu_{N}/c)^{2}fm^{2\lambda-2} \end{split}$$

Weisskopf estimates $(J_i > J_f)$ – single particle probabilities (*Energies in MeV*):

Ελ	$T(E\lambda)(s^{-1})$	$B_W(E\lambda)(e^2 fm^{2\lambda})$	$T_W(E\lambda)(s^{-1})$	Μλ	$T(M\lambda)(s^{-1})$	$B_W(M\lambda)((\mu_N/c)^2 fm^{2\lambda-2})$	$T_W(M\lambda)(s^{-1})$
E1	$1.587 \times 10^{15} E^3 B(E1)$	$6.446 imes 10^{-2} A^{2/3}$	$1.023 imes 10^{14} E^3 A^{2/3}$	M1	$1.779 \times 10^{13} E^3 B(M1)$	1.790	$3.184 \times 10^{13} E^3$
E2	$1.223\times10^9\text{E}{}^5\text{B}(\text{E2})$	$5.940 imes 10^{-2} A^{4/3}$	$7.265 imes 10^7 E^5 A^{4/3}$	M2	$1.371 \times 10^{7} E^{5} B(M2)$	$1.650A^{2/3}$	$2.262 \times 10^7 E^5 A^{2/3}$
E3	$5.698\times10^2\text{E}^7\text{B}(\text{E3})$	$5.940 imes 10^{-2} A^2$	$3.385\times10^{1}\text{E}^{7}\text{A}^{2}$	M3	$6.387\times 10^0 \mathrm{E}^7 \mathrm{B}(\mathrm{M3})$	$1.650A^{4/3}$	$1.054 imes 10^1 \mathrm{E}^7 \mathrm{A}^{4/3}$
E4	$1.694 imes 10^{-4} E^9 B(E4)$	$6.285 imes 10^{-2} A^{8/3}$	$1.065 imes 10^{-5} E^9 A^{8/3}$	M4	$1.899 \times 10^{-6} E^9 B(M4)$	$1.746A^2$	$3.316 imes 10^{-6} E^9 A^2$
E5	$3.451 \times 10^{-11} \text{E}^{11} \text{B}(\text{E5})$	$6.928 \times 10^{-2} A^{10/3}$	$2.391\times 10^{-12}E^{11}A^{10/3}$	M5	$3.868 \times 10^{-13} \text{E}^{11} \text{B}(\text{M5})$	1.924A ^{8/3}	$7.442 \times 10^{-13} E^{11} A^{8/3}$

Weisskopf estimates of transition rates

When the details of the wave function are not known – single particle probabilities

Ελ	$T(E\lambda)(s^{-1})$	$B_W(E\lambda)(e^2 fm^{2\lambda})$	$T_W(E\lambda)(s^{-1})$	Μλ	$T(M\lambda)(s^{-1})$	$B_W(M\lambda)((\mu_N/c)^2 fm^{2\lambda-2})$	$T_W(M\lambda)(s^{-1})$
E1	$1.587 \times 10^{15} E^3 B(E1)$	$6.446 imes 10^{-2} A^{2/3}$	$1.023 \times 10^{14} \mathrm{E}^3 \mathrm{A}^{2/3}$	M1	$1.779 \times 10^{13} E^3 B(M1)$	1.790	$3.184 imes 10^{13} E^3$
E2	$1.223 \times 10^9 E^5 B(E2)$	$5.940 imes 10^{-2} A^{4/3}$	$7.265 imes 10^7 E^5 A^{4/3}$	M2	$1.371\times 10^7 \mathrm{E}^5 \mathrm{B}(\mathrm{M2})$	$1.650A^{2/3}$	$2.262 \times 10^7 E^5 A^{2/3}$
E3	$5.698 \times 10^{2} \mathrm{E}^{7} \mathrm{B}(\mathrm{E}3)$	$5.940 imes 10^{-2} A^2$	$3.385\times10^{1}\mathrm{E}^{7}\mathrm{A}^{2}$	M3	$6.387\times 10^{0}\mathrm{E}^{7}\mathrm{B}(\mathrm{M3})$	$1.650A^{4/3}$	$1.054 imes 10^1 \mathrm{E}^7 \mathrm{A}^{4/3}$
E4	$1.694 imes 10^{-4} E^9 B(E4)$	$6.285 imes 10^{-2} A^{8/3}$	$1.065 \times 10^{-5} \mathrm{E}^{9} \mathrm{A}^{8/3}$	M4	$1.899 \times 10^{-6} \mathrm{E}^{9} \mathrm{B}(\mathrm{M4})$	$1.746A^2$	$3.316 imes 10^{-6} E^9 A^2$
E5	$3.451 imes 10^{-11} E^{11} B(E5)$	$6.928 imes 10^{-2} A^{10/3}$	$2.391\times 10^{-12}E^{11}A^{10/3}$	M5	$3.868 \times 10^{-13} \text{E}^{11} \text{B}(\text{M5})$	1.924A ^{8/3}	$7.442\times 10^{-13} E^{11} A^{8/3}$

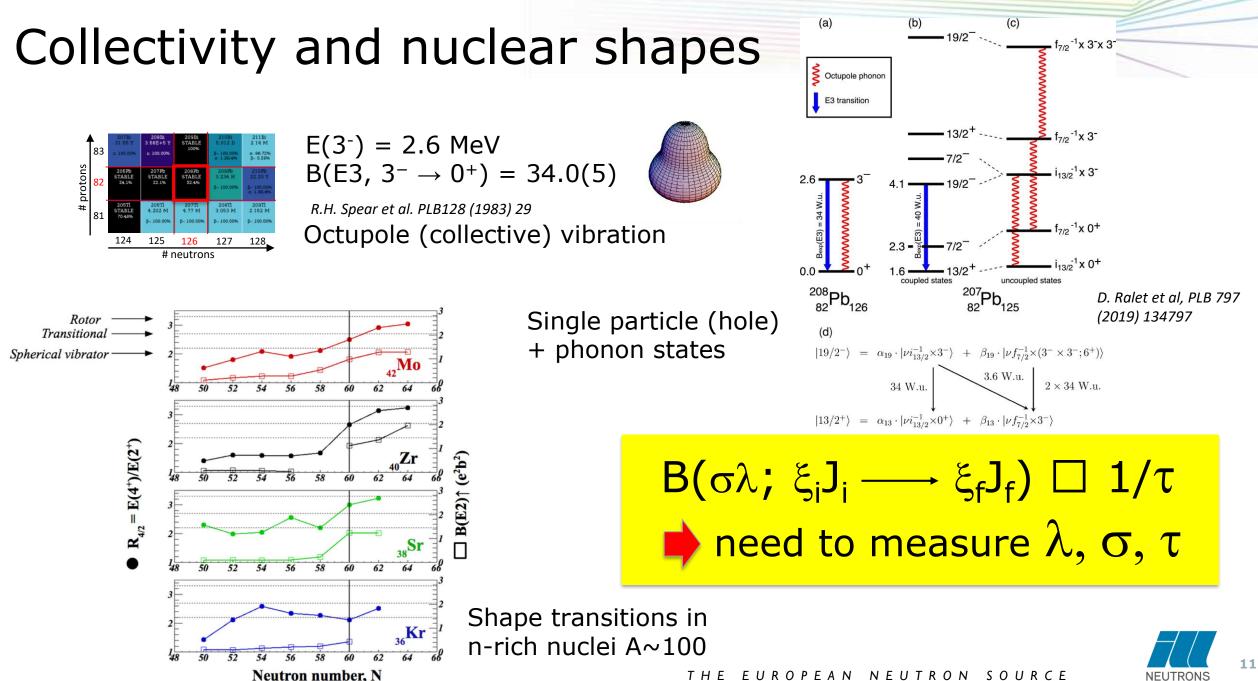
$$T(E\lambda)/T(M\lambda) \approx 2A^{2/3}$$
 for a given λ ,
electric transition
always dominates
$$T(E\lambda+1)/T(M\lambda) \approx 10^{-6}A^{4/3}E^2$$
 for large A and E_{γ} , E2
can compete with M1,
E3 with M2, ...
$$E3 \text{ with M2, ...}$$
 as L increases, T decreases

THE EUROPEAN NEUTRON SOURCE

Of course not for same transition in same nucleus :) just to have a general idea in given mass region

quite "dramatically"

 $T(\sigma\lambda+1)/T(\sigma\lambda) \approx 10^{-8}A^{2/3}E^2$



D. Revaadas, PhD Thesis, UGA 2021

THE EUROPEAN NEUTRON SOURCE

FOR SOCIET

Angular distributions (correlations)

Measurement of the multipole order of the transition (λ , eventually mixed)

k integer up to min{2J₂, λ_1 , λ_2 } "sources" of alignement : magnetic field nuclear reactions (heavy ion reactions)

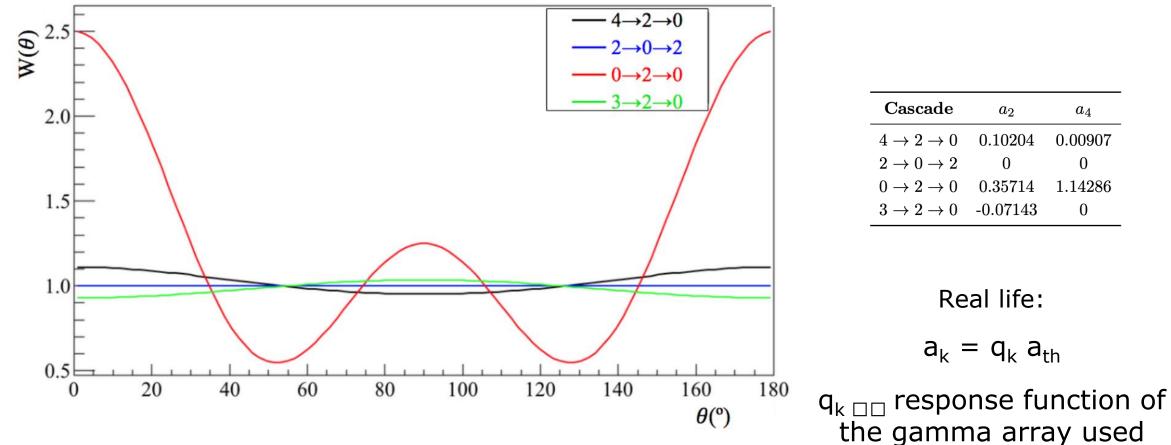
Or set a direction by coincidence on a gamma on the cascade : angular correlations

If max multipolarity = 2 :
$$W(\theta) = A_0[1 + a_2P_2(\cos(\theta)) + a_4P_4(\cos(\theta))]$$
 $a_k = A_k/A_0$

$$P_2(\cos(\theta)) = rac{1}{2}(3\cos^2(\theta) - 1), \quad P_4(\cos(\theta)) = rac{1}{8}(35\cos^4(\theta) - 30\cos^2(\theta) + 3).$$

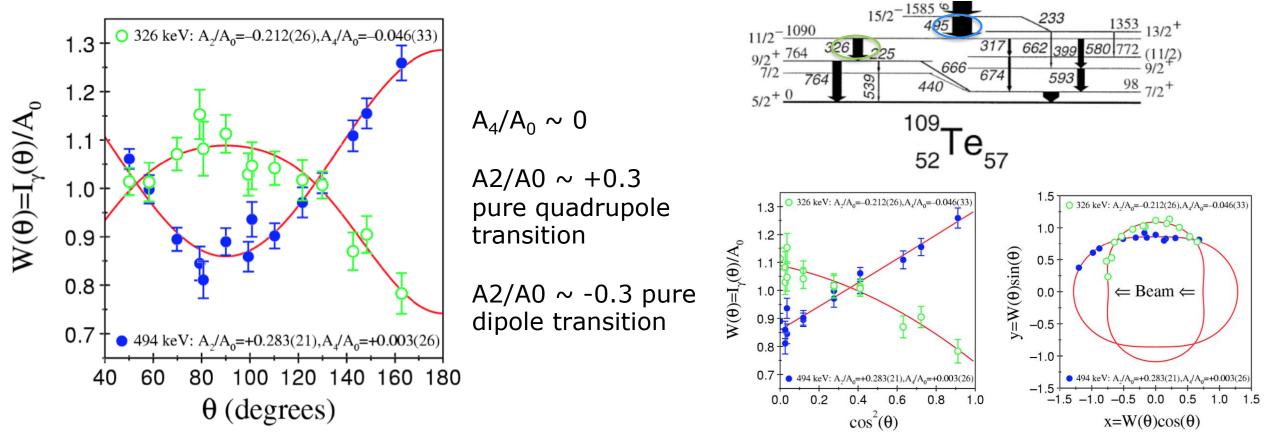
Examples of theoretical angular correlation functions

$$W(\theta) = A_0[1 + a_2 P_2(\cos(\theta)) + a_4 P_4(\cos(\theta))]$$



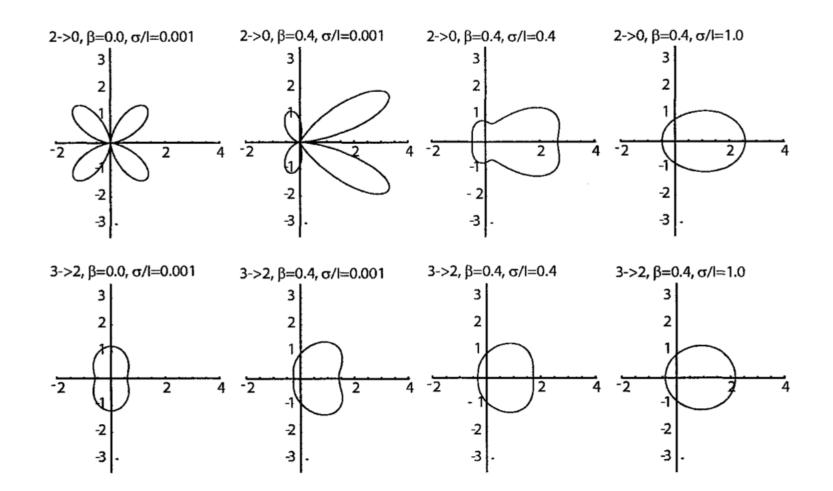
Data from https://griffincollaboration.github.io/AngularCorrelationUtility/

¹⁰⁹Te from fusion-evaporation reactions



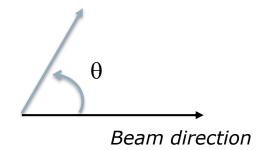
 $A_4/A_0 \sim 0 \square W(\theta)$ linear in $\cos^2\theta$

Polar plots as a function of beam velocity β



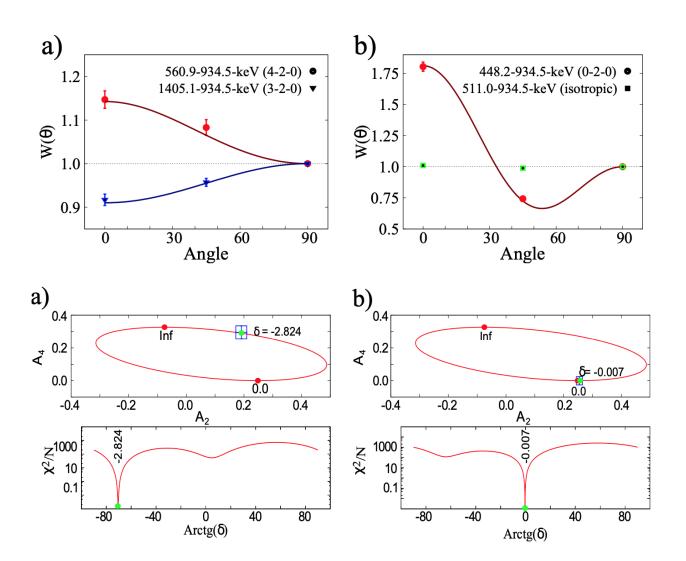
In the lab. frame

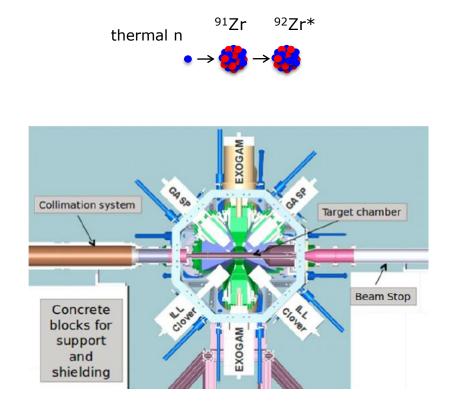
 σ/l = width of the gaussian m-state distribution



Mueller al, Nucl. Instrum. Methods 466,492 (2001).

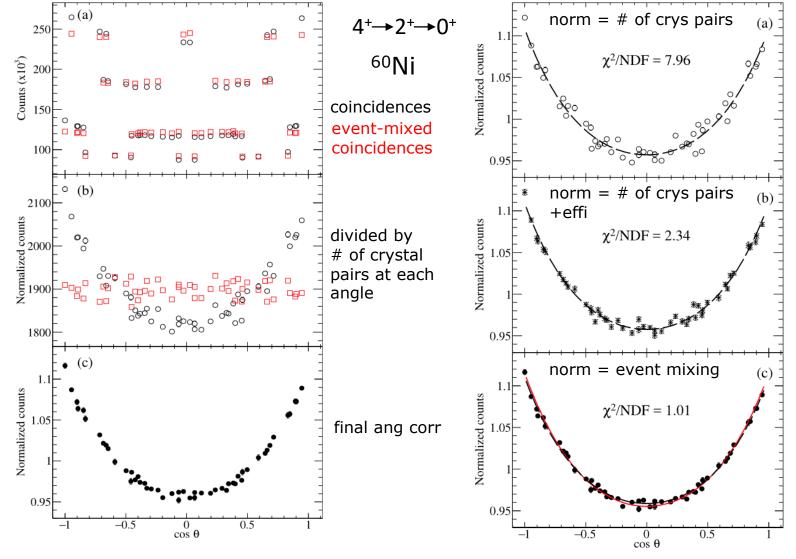
Examples of angular correlations

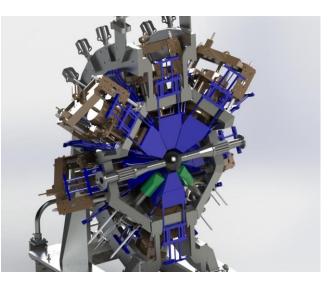




M. Jentschel et al., JINST 12 (2017) P11003

Angular Correlations: normalization





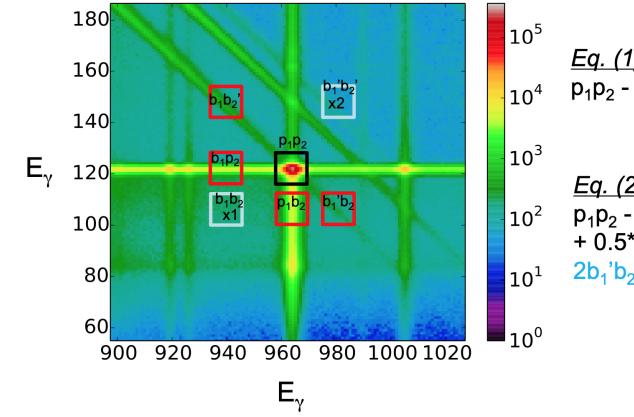
GRIFFIN @ TRIUMF

The intensities at each angle are normalized using the EVENT MIXING technique

THE EUROPEAN NEUTRON SOURCE

J.K. Smith et al., Nucl. Instr. Meth. A922 (2019) 47

Angular Correlations: bg subtraction

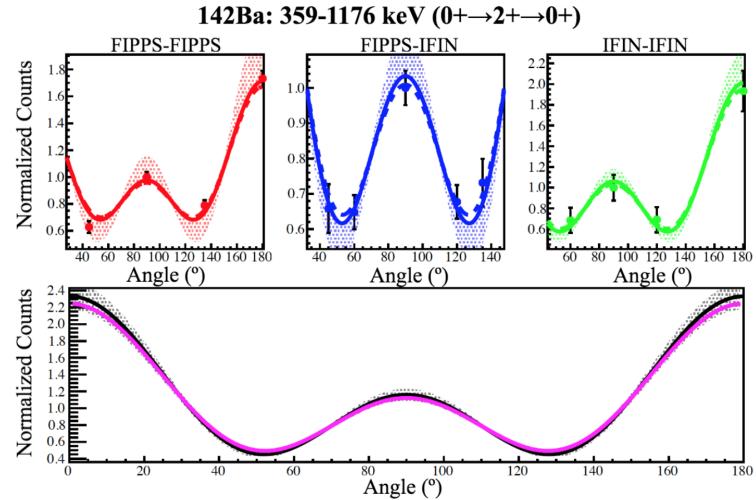


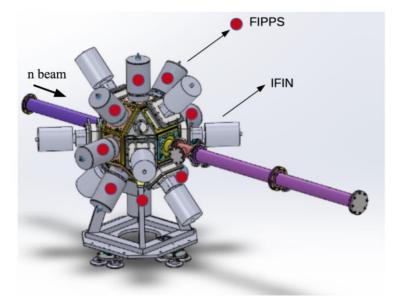
Eq. (1): $p_{1}p_{2} - p_{1}b_{2} - b_{1}p_{2} + b_{1}b_{2}$ Eq. (2)*: $p_{1}p_{2} - p_{1}b_{2} - b_{1}p_{2} + b_{1}b_{2}$ $+ 0.5*[-b_{1}b_{2}' - b_{1}'b_{2} + 2b_{1}'b_{2}']$

Correlated background must be properly subctrated (often ignored in a "simple" 1D analysis... !)

*Correlated background mostly impacts small $\theta_{\gamma\gamma}$ and weak $I(\gamma\gamma)$

Angular correlations with hybrid detector setup



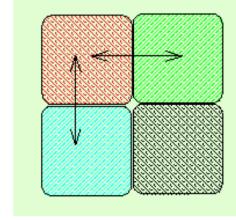


Hybrid detector setup! Simultaneous fit of all type of combinations

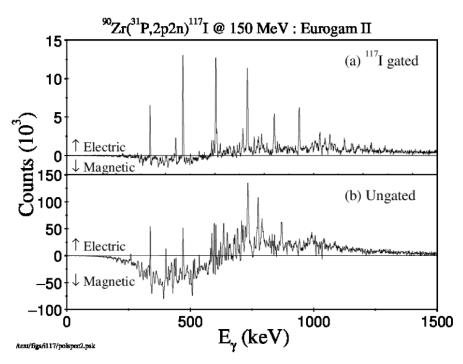
E/M character of γ transitions

Parity of nuclear states

Compton scattering can be used to measure the γ -ray linear polarisation – the direction of the electric vector with respect to the beam-detector plane



Clover detectors are ideal



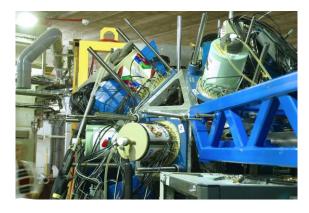
$$A = rac{N_\perp - N_\parallel}{N_\perp + N_\parallel}$$

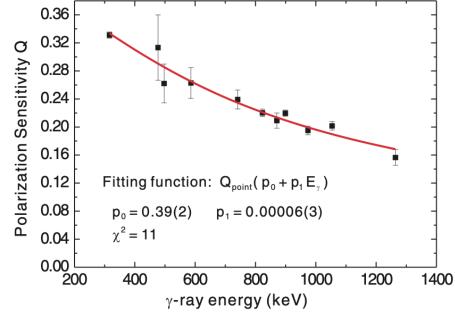
P = A/Q

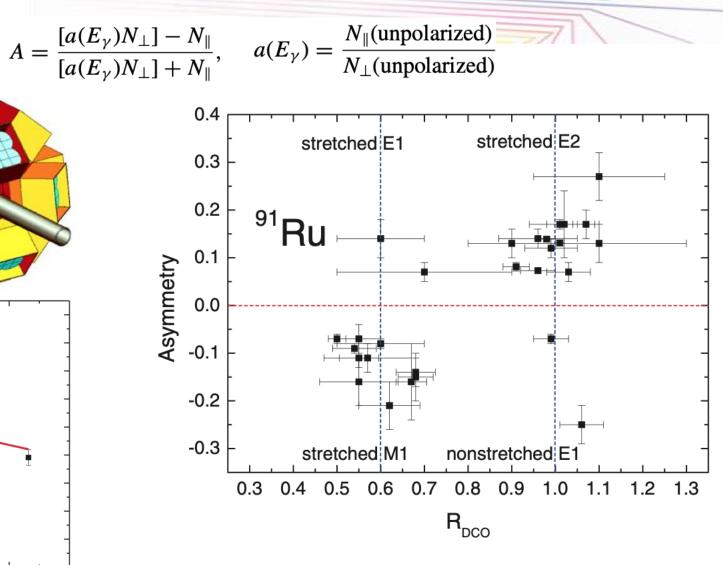
Q = polarization sensitivity (as a function of the energy)

Streched E2 : P>0; Streched M1 : P<0

An example



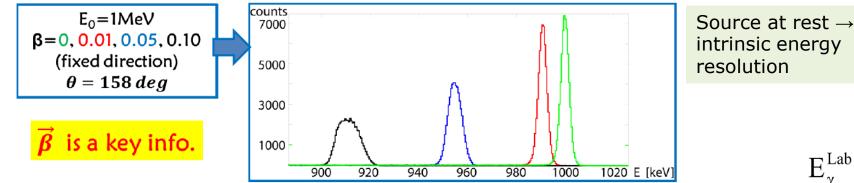


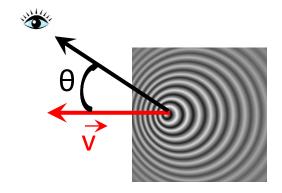


Y. Zheng, PHYSICAL REVIEW C 87, 044328 (2013)

Lifetime measurements using Doppler techniques

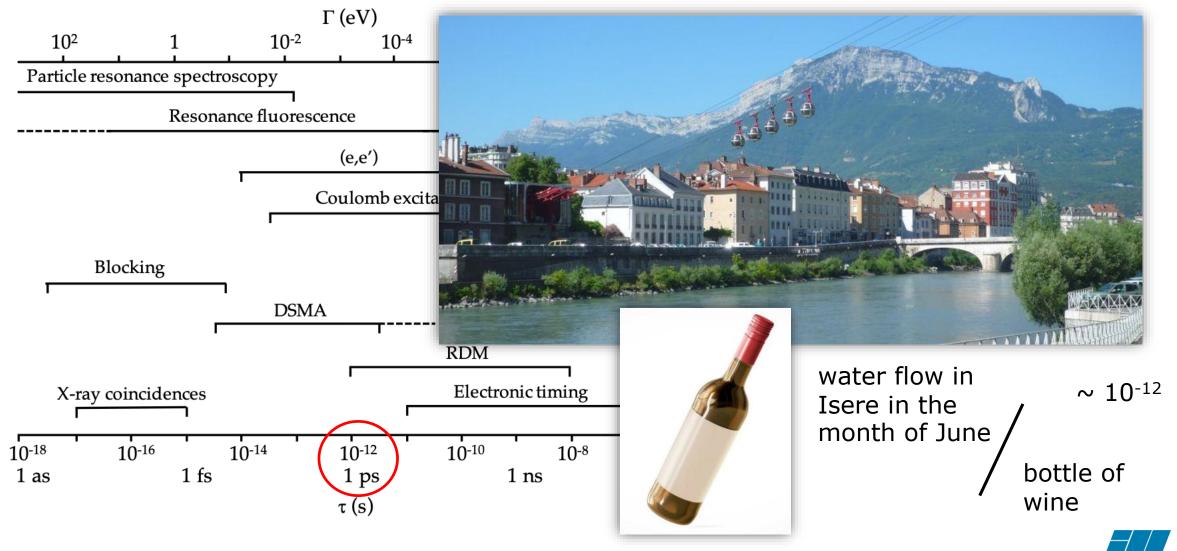
Reminder from last Lecture:





$$E_{\gamma}^{\text{Lab}}(\theta) = E_{\gamma}^{\text{CM}} \frac{\sqrt{1 - \beta^2}}{1 - \beta \cdot \cos \theta}$$

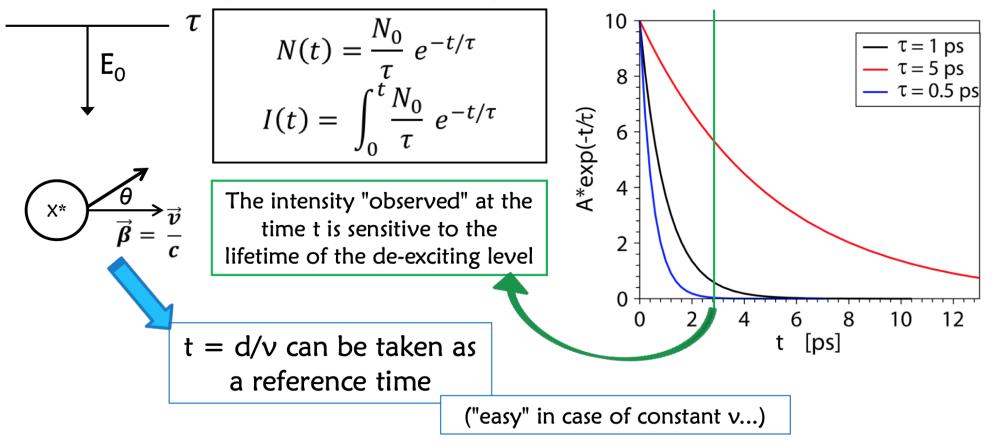
Direct vs Indirect methods for measuring lifetimes



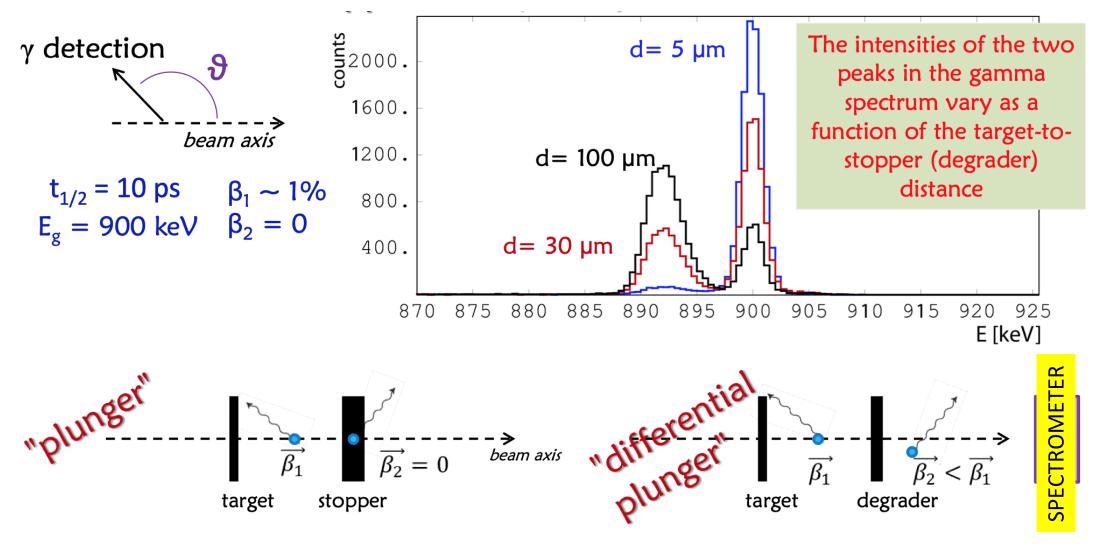
NEUTRONS FOR SOCIETY

A very simple starting point...

a "simple" case: N₀ nuclei populated at $t_0=0$ in an isolated level with lifetime τ

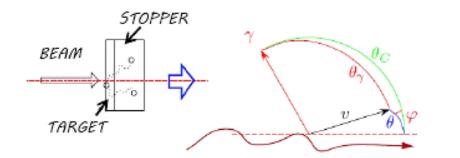


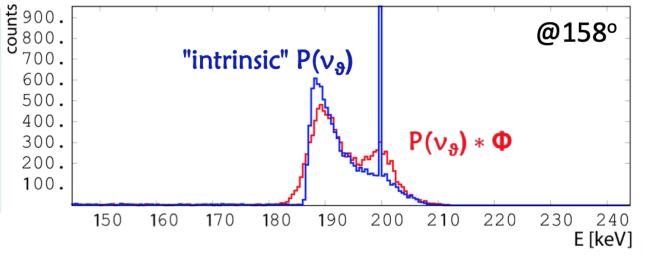
Recoil Distance Doppler Shift Techniques



Doppler Shift Attenuation Method (DSAM)

when the lifetime is \approx slowing down time of the emitting ion in the substrate material a continuous energy distribution is observed in the gamma spectrum, from the "nominal" energy to the one corresponding to the max. Doppler shift





$$\mathsf{P}(\mathsf{v}_{\vartheta}) = \int_0^\infty dt \, S(t, \mathsf{v}_{\theta}) \frac{n(t)}{\tau}$$

Monte Carlo simulations of the stopping process allow for the determination of the lifetime from a *line-shape analysis* (W.M.Currie, NIM 73 (1969) 173) n(t) = decay function (exp(-t/ τ) in "our simple case") S(t, v_{ϑ}) = slowing down matrix Φ = detector response function

Nowadays: full Geant4 simulations

NEUTRONS

Doppler shift techniques

Some remarks

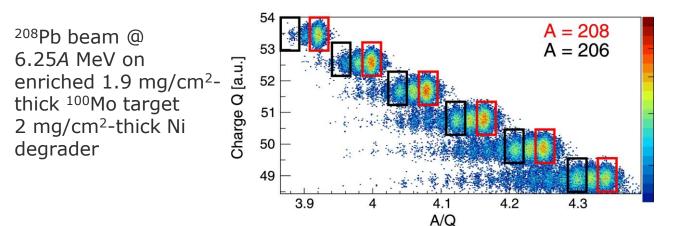
Main systematic errors on the determination of τ :

- × multiple (side) feeding \rightarrow "true" lifetime ≠ effective lifetime
- ★ nuclear de-orientation (plunger) → variation of the intensities for different distances travelled by the emitting ion not related to the lifetime (S.Harissopulos *et al.*, NP A467 (1987) 528 and ref. therein)
- × uncertainties on the (nuclear) stopping powers (DSAM \rightarrow 10-15%)
- in "special cases" a lineshape analysis is advantageous also for RDDS data (P.Petkov et al., NIM A431 (1999) 208)

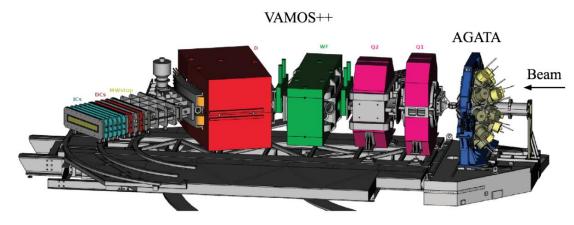
Analysis of <u>coincidence</u> data: RDDS → A.Dewald *et al.*, Z.Phys. A344 (1989) 163 DSAM → F.Brandolini *et al.*, NIM A417 (1998) 150

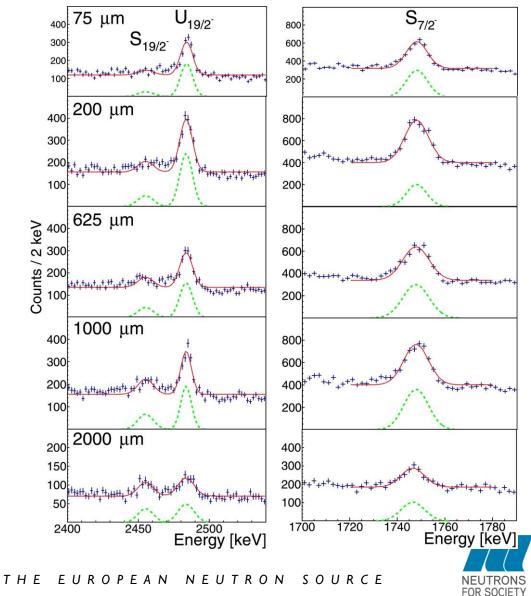
This is not the case when the statistics is sufficient only for singles gamma spectra analysis!!!

Lifetime measurements in ²⁰⁷Pb



Beam-like reaction products detected and identified on an event-by-event basis in the large-acceptance VAMOS++ spectrometer





ТНЕ

There's not a nuclear model that explains everything!

A challenge for both theory and nuclear instrumentation

