Looking Forward to New Physics at the LHC and HL-LHC

Jamie Boyd (CERN), on behalf of the FASER Collaboration
Intro: The intensity frontier at the LHC

- The LHC is the highest energy collider in the world with a very high luminosity
- It was designed to search for heavy strongly produced new particles, and to study heavy Standard Model physics
 - Existing experiments well suited for this, and performing extremely well
- However, given the huge number of light SM hadrons that are produced in the LHC collisions it can also be used to study intensity frontier physics (normally the domain of fixed target experiments):
 - Weakly coupled, light new particles (dark sector)
 - Weak coupling means very rarely produced, and long-lived
 - Neutrinos produced in hadron decay
 - Weak coupling means rarely interacting
- Given that the flux of light hadrons produced in the LHC collisions is very collimated around the beam collision axis, even a small detector situated in this region can have important sensitivity to both dark sector particles and neutrino interactions
 - e.g. 1% of pions with E > 10 GeV are produced in the forward 0.000001% of the solid angle (\(\eta > 9.2\)) SUSY, top, Higgs, …
FASER is a new, small experiment at the LHC designed to take advantage of this and to search for new, light, long-lived particles (LLPs), and study neutrinos. The experiment is situated ~500m from the ATLAS collision point, on the beam collision axis line-of-sight (LOS), and started taking physics data in July 2022 with the start of LHC Run 3. FASER is situated in an unused former injection tunnel which allows the detector to be placed on the LOS, after digging a small trench ~50cm deep.
FASER Location: TI12 tunnel
Digging ~50cm deep trench needed to allow 5m long detector to be aligned with LOS.
FASER Location: TI12 tunnel

Digging ~50cm deep trench needed to allow 5m long detector to be aligned with LOS.
THE THERMAL RELIC LANDSCAPE

Mass

MeV GeV TeV

Interaction Strength

Interacting Light Particles

Weakly Interacting

Already Discovered

Too Little to be Dark Matter

Strongly Interacting Heavy Particles

Just Right to be Dark Matter

DM

<σv> ~ \frac{\varepsilon^2}{m_{A'}^2}

Too Much to be Dark Matter

Impossible to Discover

17 Jan 2022

"The WIMPless Miracle"
Feng, Kumar (2008);
see also Boehm, Fayet (2003)
Pospelov, Ritz, Voloshin (2007)
THE NEW PARTICLE LANDSCAPE

Mass
- MeV
- GeV
- TeV

Interaction Strength
- 10^{-6}
- 10^{-3}
- 1

- Already Discovered
- Strongly Interacting Heavy Particles
- Weakly Interacting Light Particles
- Impossible to Discover

MUCH LONGER LIFETIMES

$L \propto \frac{1}{\varepsilon^2 m^2}$

17 Jan 2022
Vector portal, contains a new gauge boson, the dark photon \((A')\) with mass \(m_{A'}\) and \(\epsilon Q_f\) couplings to SM fermions \(f\)

- Produced (very rarely) in meson decays, e.g.,

\[
B(\pi^0 \rightarrow A'\gamma) = 2\epsilon^2 \left(1 - \frac{m_{A'}^2}{m_{\pi^0}^2}\right)^3 B(\pi^0 \rightarrow \gamma\gamma)
\]

and also through other processes

- Travels long distances through matter without interacting, decays to \(e^+e^-\), \(\mu^+\mu^-\) for \(m_{A'} > 2m_\mu\), other charged pairs

\[
\bar{d} = c \frac{1}{\Gamma_{A'}} \gamma_{A'}/\beta_{A'} \approx (80 \text{ m}) B_e \left[\frac{10^{-5}}{\epsilon}\right]^2 \left[\frac{E_{A'}}{\text{TeV}}\right] \quad E_{A'} \gg m_{A'} \gg m_e
\]

- TeV energies at the LHC \(\rightarrow\) huge boost, decay lengths of \(~100 \text{ m}~\) are possible for viable and interesting parameters
FASER takes advantage of the huge number of light mesons (π^0, η, \ldots) that are produced at the LHC, predominantly in the very forward direction.

For example for $E(\pi^0) > 10$ GeV,
- $\mathcal{O}(1\%)$ of π^0s fall in FASER acceptance;
- whereas the FASER acceptance covers just $\mathcal{O}(10^{-6})$ of the solid angle.

Run-3 (0.15/ab) will produce a huge number of π^0s in FASER angular acceptance $\mathcal{O}(10^{15})$. Even with large suppression ($e^2 \sim 10^{-8} - 10^{-10}$ for relevant region of parameter space) can still have very large number of dark photons produced.

LHC can be a dark photon factory!
Leads to a projected sensitivity (as a function of luminosity)

- Start to explore unconstrained space even with 1/fb
- Significant discovery potential with 150/fb (expected lower limit on total Run-3 dataset)

Plot assumes 0 background and 100% efficiency. However contours little effected by $O(1)$ change in efficiency.

Signal topology striking, so believe that 0-background is reasonable assumption.

FASER will also have sensitivity to several other dark sector scenarios including ALPs, Other gauge bosons, ...
FASER Detector

arxiv: 2207.11427
1. No signal in the veto scintillator;
2. Two high energy oppositely charged tracks, consistent with originating from a common vertex in the decay volume, and with a combined momentum pointing back to the IP;
3. For $A' \rightarrow e^+e^-$ decay: Large EM energy in calorimeter. EM showers too close to be resolved.

Magnets needed to separate the A' decay products sufficiently to be able to be resolved in tracker.
1. No signal in the veto scintillator;
2. Two high energy oppositely charged tracks, consistent with originating from a common vertex in the decay volume, and with a combined momentum pointing back to the IP;
3. For A' → e^+e^− decay: Large EM energy in calorimeter. EM showers too close to be resolved.

Magnets needed to separate the A' decay products sufficiently to be able to be resolved in tracker.

FASER Detector Philosophy
Given the very tight timeline between experiment approval and installation & the limited budget we have focused on:
- Detector that can be constructed and installed *quickly & cheaply*
- Have tried to re-use existing detector components where possible
- Aimed for a simple, robust detector (access difficult)
- Tried to minimize the services to simplify the installation and operations

Many challenges of the large LHC experiments not there for FASER:
- Trigger rate $\mathcal{O}(1 \text{ kHz})$ (mostly single muon events)
- Low radiation
- Low occupancy / event size
The FASER magnets are 0.57T permanent dipole magnets based on the Halbach array design
 • Thin enough to allow the LOS to pass through the magnet center with minimum digging to the floor in TI12
 • Minimize needed services (power, cooling etc..)
• Designed, constructed and measured by the magnet group at CERN
FASER Tracker

- FASER Tracker needs to be able to efficiently separate very closely spaced tracks
- The FASER Tracker is made up of 4 tracking stations
- Each containing 3 layers of double-sided silicon micro-strip sensors
 - Spare ATLAS SCT modules are used
 - 80μm strip pitch, 40mrad stereo angle (17μm / 580μm resolution)
 - precision measurement in bending (vertical) plane
 - Many thanks to the ATLAS SCT collaboration!
- 8 SCT modules give a 24cm x 24cm tracking layer
- 12 layers (3/station, 4 stations) => 96 SCT modules needed for the full tracker

SCT module

Tracking layer

Tracker Station
FASER Scintillators

Scintillators used for:
- Vetoing incoming charged particles
 - Very high efficiency needed (\(O(10^8)\) incoming muons in 150/fb)
- Triggering
- Timing measurement
 - \(~0.5\) ns resolution
- Simple pre-shower for Calorimeter

Scintillators, light guides and PMT housing constructed at CERN scintillator lab (EP-DT).
FASER Calorimeter

- FASER EM calorimeter for:
 - Measuring the EM energy in the event
 - Electron/photon identification
 - Triggering
- Uses 4 spare LHCb outer ECAL modules
 - *Many thanks to LHCb* for allowing us to use these!
 - 66 layers of lead/scintillator, light out by wavelength shifting fibers
 - 25 radiation lengths long
 - Readout by single PMT (no longitudinal shower information)
 - Only 4 channels in full calorimeter
 - Dimensions: 12cm x 12cm – 75cm long (including PMT)
 - Provides ~1% energy resolution for 1 TeV electrons
Trigger rate $\mathcal{O}(1 \text{ kHz})$
Event size (~25KB)
No triggers shared with ATLAS
FASER DAQ software based on DAQling framework from EP-DT
FASER Detector Installation
Tracker Installation
FASER was installed into TI12 in March 2021. Physics data taking started in July 2022, after >1 year of in situ cosmic ray datataking.
FASER Operations

FASER has been successfully collecting 13.6 TeV collision data since July 2022, with no big problems observed. Detector timed in with first collision data. Over 35/fb of data have been recorded, and many performance studies are ongoing. The maximum trigger rate is ~1.2kHz, nearly 2x the expectation, but this is not a problem for physics (physics deadtime <2%). Currently only 850/pb (<2.5% of full dataset) data lost due to operational issues.
Collision Muon Event

Collison event with a muon traversing FASER
Reconstructed momentum 22 GeV.
Signal consistent with MIP seen in all scintillators and calorimeter.

Run 8336
Event 1477982
2022-08-23 01:46:15

Zoom in of 1st tracking station
• Veto efficiency measurement in data, for events with track that extrapolates into the scintillator. Each individual scintillator efficiency >99.99%.
• When 4 scintillators combined can veto expected $\mathcal{O}(10^8)$ muons entering the detector in Run 3.
• Scintillator noise measured in random triggered events, observed noise $\sim 0.15\text{pC}$ and dominated by digitizer noise
 • Noise much less than MIP signal ($\sim 70\text{pC}$)
Calorimeter Performance

- Calorimeter energy resolution measured with SPS testbeam in summer 2021
- Confirming $\mathcal{O} (1\%)$ resolution for high energy electrons.
- Testbeam also used to demonstrate calibration method using muon MIP peak to set energy scale at low energy, and LED calibration pulses to scale this to high energy as PMT gain changed.
Used early collision data tracks to set fine timing delay in the readout of each SCT module, in order to optimize fraction of hits on track in middle of three 25ns time bins read out.
Tracker calibrations run periodically. Show excellent stability of tracker performance throughout the year. Number of dead/noisy strips constant and <0.1%.
Tracker Performance

Tracker hit efficiency as a function of threshold and bias voltage, measured in collision data. Observe as expected very high efficiency >99.6%.
Beam-1 background

- When beam-1 bunches pass the back of FASER (on way to ATLAS) they can lead to background in the detector. This background is \(~3.2\mu s\) (127 BCs) too early compared to particles coming from IP1 to FASER
- After observing this in the pilot beam test in Nov 2021, concrete shielding installed at back of FASER to reduce this background
Beam-1 background

- When beam-1 bunches pass the back of FASER (on way to ATLAS) they can lead to background in the detector. This background is ~3.2 μs (127 BCs) too early compared to particles coming from IP1 to FASER.
- After observing this in the pilot beam test in Nov 2021, concrete shielding installed at back of FASER to reduce this background.
Beam-1 background

- When beam-1 bunches pass the back of FASER (on way to ATLAS) they can lead to background in the detector. This background is \(\sim 3.2\,\mu\text{s} \) (127 BCs) too early compared to particles coming from IP1 to FASER.
- After observing this in the pilot beam test in Nov 2021, concrete shielding installed at back of FASER to reduce this background.

When LHC running with small number of bunches (600b in this plot), can identify specific BCs corresponding to beam-1 background and with no colliding bunch in IP1.
Beam-1 background

- When beam-1 bunches pass the back of FASER (on way to ATLAS) they can lead to background in the detector. This background is ~3.2μs (127 BCs) too early compared to particles coming from IP1 to FASER.
- After observing this in the pilot beam test in Nov 2021, concrete shielding installed at back of FASER to reduce this background.

Beam-1 background can be efficiently removed by using calorimeter timing. Excellent timing resolution for large energy signals (<300ps).
Current Status

- Detector operations proceedings very well
- Detector performance studies with collision data ongoing, so far showing excellent performance
- Full simulation/analysis chain up and running and validated
- Physics studies ongoing, hoping for first results in Q1 next year

Many thanks to the ATLAS experiment for luminosity information
Pre-shower Upgrade

- Current detector problematic for new particles decaying to 2 photons (such as ALPs)
 - Given low mass and large boost resulting photons are very closely spaced (<1mm separation)
- Current detector could detect events with large energy in calorimeter, but this suffers from background from neutrino interactions inside the calorimeter
 - First case of neutrino interactions as a background for collider searches?
- New high granularity silicon pixel / tungsten preshower under development to be able to identify 2 closely spaced photon signature
 - Sensitivity to photon spacing down to 200µm!
- Project approved by CERN in April 2022

Simulated charge seen in preshower 6th layer, from 2 photons (1 TeV, 750 GeV) separated by 0.2mm.
A huge number of neutrinos produced in the LHC collisions (hadron decay) traverse the FASER location covering an unexplored neutrino energy regime. FASERν is an emulsion/tungsten detector placed in front of the main FASER detector to detect neutrino’s of all flavours.

<table>
<thead>
<tr>
<th>150/fb @14TeV</th>
<th>ν_e</th>
<th>ν_μ</th>
<th>ν_τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main production source</td>
<td>kaon decay</td>
<td>pion decay</td>
<td>charm decay</td>
</tr>
<tr>
<td># traversing FASERν 25cm x 30cm</td>
<td>$O(10^{11})$</td>
<td>$O(10^{12})$</td>
<td>$O(10^9)$</td>
</tr>
<tr>
<td># interacting in FASERν (1.1tn Tungsten)</td>
<td>\sim1300</td>
<td>\sim20000</td>
<td>\sim20</td>
</tr>
</tbody>
</table>
FASER Neutrino Measurements

A huge number of neutrinos produced in the LHC collisions (hadron decay) traverse the FASER location covering an unexplored neutrino energy regime. FASERν is an emulsion/tungsten detector placed in front of the main FASER detector to detect neutrino’s of all flavours.

Primary physics goal – cross section measurements at high energy.
Projected results (150/fb):

Matching muon track associated with vertex in emulsion detector with spectrometer will allow to measure $\nu_\mu / \bar{\nu}_\mu$ separately.
Uncertainty from neutrino production important
Neutrino energy reconstruction with resolution ~30% expected from simulation studies

Matching muon track associated with vertex in emulsion detector with spectrometer will allow to measure $\nu_\mu / \bar{\nu}_\mu$ separately.
Uncertainty from neutrino production important
Neutrino energy reconstruction with resolution ~30% expected from simulation studies
• FASERν detector is 1m long, 30x25cm 1.1tn detector
• Made from 730 x 1.1mm tick tungsten plates, interleaved with emulsion films
• Allows to distinguish all flavour of neutrino interactions and neutral hadron vertices
• Emulsion film has excellent position/angular resolution for charged particle tracks
• But no time resolution...
• Detector needs to be replaced every 30-50/fb to keep the track multiplicity manageable
• Replaced during Technical Stops during LHC running (usually 3 times / year)
 • Take advantage of transport infrastructure installed in UJ12/TI12 for FASER
FASERν Simulated Signal Events
FASERν Detector

- FASERν detector is 1m long, 30x25cm 1.1tn detector
- Made from 730 x 1.1mm tick tungsten plates, interleaved with emulsion films
- Allows to distinguish all flavour of neutrino interactions and neutral hadron vertices
- Emulsion film has excellent position/angular resolution for charged particle tracks
- But no time resolution...
- Detector needs to be replaced every 30-50/fb to keep the track multiplicity manageable
- Replaced during Technical Stops during LHC running (usually 3 times / year)
 - Take advantage of transport infrastructure installed in UJ12/Ti12 for FASER
- FASERν is centered on the LOS (in the FASER trench)
 - Maximizes flux of all neutrino flavours
• A small emulsion detector was installed in the FASER location during 2018 LHC running
 • 10 kg target mass after DQ/fiducial selections
 • Used to validate FLUKA simulation of background particle flux
• 12.2/fb data collected (~1 month)
• 18 neutral vertices identified
• Neutrino signal separated from muon induced neutral hadron background using a BDT
 • Exploiting the fact that neutrinos are much more energetic than neutral hadrons
 • Modelling of neutral hadron background validated using reconstructed charged vertices
• Best fit value of 6.1 neutrino interactions (3.3 expected)
 • 2.7sigma significance
A small emulsion detector was installed in the FASER location during 2018 LHC running
- 10 kg target mass after DQ/fiducial selections
- Used to validate FLUKA simulation of background particle flux
- 12.2/fb data collected (~1 month)
- 18 neutral vertices identified
- Neutrino signal separated from muon induced neutral hadron background using a BDT
 - Exploiting the fact that neutrinos are much more energetic than neutral hadrons
 - Modelling of neutral hadron background validated using reconstructed charged vertices
- Best fit value of 6.1 neutrino interactions (3.3 expected)
 - 2.7sigma significance

First candidate collider neutrino interactions!
FASERν Installation
FASERν
Workflow

In Japan
- Emulsion film production
- Detector assembling

At CERN
- Exposure
- Disassembling
- Development

In Japan
- Full area readout

Off-line analysis
- Kinematical analysis
- Search for tau/charm decays
- \(\mu / e\) ID
- Vertex reconstruction
- Track reconstruction
- Alignment

Interface tracker data
Spectrometer data

500-1000 TB/Run3
~500 TB/Run3
FASERν Detector Performance

- First FASERν detector installed in FASER for first 4 weeks of data taking, 0.5/fb of data
- Used to commission the assembly, development, scanning, reconstruction, analysis chain
- Measured track multiplicity:
 - ~2x10^4 cm^-2 / fb^-1
 - ~1x10^4 cm^-2 / fb^-1 within 10mrad of angular peak
- Consistent with expectation (from FLUKA simulation and 2018 in situ measurements)
- Very good tracking performance (residual <0.5µm)
- Second detector exposed to 10/fb of data, and third detector still in place with >25/fb of exposure so far...

<table>
<thead>
<tr>
<th>Year</th>
<th>Module</th>
<th>Data Taking</th>
<th>Integrated Luminosity per Module (fb^-1)</th>
<th>N ν Int. expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>2022</td>
<td>1st</td>
<td>Mar 15 – Jul 26</td>
<td>0.5</td>
<td>~7</td>
</tr>
<tr>
<td>2022</td>
<td>2nd</td>
<td>Jul 26 – Sep 13</td>
<td>10.6</td>
<td>~530</td>
</tr>
<tr>
<td>2022</td>
<td>3rd</td>
<td>Sep 13 – Nov 29</td>
<td>(~20)</td>
<td>(~1000)</td>
</tr>
</tbody>
</table>
FASER\(\nu\) Results

Angular distributions observed from analysis of first FASER\(\nu\) box. The angular coordinates \((0, 0)\) roughly corresponds to the LOS. There are two peaks separated by 0.003 rad. Both peaks are consistent with particles arriving from the beam line in the vertical plane. The origin of the two-peak structure is under investigation with simulation studies.

Angular spread consistent with multiple scattering in \(\sim 100\) m of rock for particle of several hundred GeV. (2 mrad corresponds to 270 GeV).
And now to the future....
The Forward Physics Facility

• FASER has exciting physic prospects for LHC Run 3
• However, it has become clear that in order to take maximum advantage of the physics in the very forward region of the LHC collisions in the HL-LHC era we need to increase the experimental capabilities
• Unfortunately the FASER location does not allow room for new or larger detectors to be installed on the LOS
• The Forward Physics Facility (FPF) is a proposal to create a new facility to enable a suite of new experiments to be situated on the LOS
 • The FPF has a rich and broad physics programme
• Three main physics motivations
 • Beyond Standard Model (BSM) “dark sector” searches
 • Neutrino physics
 • QCD physics
After several studies by CERN civil engineering team, looking at options around both the ATLAS and CMS interaction points have now converged on the dedicated new facility in the SM18 area as the baseline proposal. This is ~600m from the ATLAS IP (to the west), and is situated on CERN land.
FPF Facility:

65m long, 9.7m wide, 7.7m high cavern. Connected to surface through 88m high shaft (9.1m diameter): 617m from IP1.
FPF Facility:
65m long cavern.
Connected 88m high shaft 617m from...
Currently proposed FPF experiments

At the moment there are 5 proposed experiments to be situated in the FPF.
With different capabilities and covering different rapidity regions:

- **FLArE**
 - $\mathcal{O}(10\text{tn})$ LAr TPC detector
 - DM scattering
 - Neutrino physics (ν_μ/ν_e, capability for ν_τ under study)
 - Full view of neutrino interaction event

- **FASERv2**
 - $\mathcal{O}(20\text{tn})$ emulsion/tungsten detector (FASERv x20)
 - Mostly for tau neutrino physics
 - Interfaced to FASER2 spectrometer for muon charge ID ($\nu_\tau/\bar{\nu}_\tau$ separation)

- **AdvSND**
 - Neutrino detector slightly off-axis
 - Provides complementary sensitivity for PDFs from covering different rapidity to FASERv2

- **FASER2**
 - Detector for observing decays of light dark-sector particles
 - Similar to scaled up version of FASER (1m radius vs 0.1m)
 - Increases sensitivity to particles produced in heavy flavour decay
 - Larger size requires change in detector and magnet technology: Superconducting magnet

- **FORMOSA**
 - Millicharged particle detector
 - Scintillator based, similar to current miliQan experiment
BSM at FPF

The set of most popular dark-sector models compiled as benchmarks by CERN Physics Beyond Colliders (PBC) group:

FPF experiments would give significant new sensitivity in all of these models.

Proposed dedicated new experiments for milicharged particles and scattering of dark matter particles.

<table>
<thead>
<tr>
<th>Benchmark Model</th>
<th>FPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC1: Dark Photon</td>
<td>FASER 2</td>
</tr>
<tr>
<td>BC1': U(1)_{B-L} Gauge Boson</td>
<td>FASER 2</td>
</tr>
<tr>
<td>BC2: Dark Matter</td>
<td>FLArE</td>
</tr>
<tr>
<td>BC3: Milli-Charged Particle</td>
<td>FORMOSA</td>
</tr>
<tr>
<td>BC4: Dark Higgs Boson</td>
<td>FASER 2</td>
</tr>
<tr>
<td>BC5: Dark Higgs with hSS</td>
<td>FASER 2</td>
</tr>
<tr>
<td>BC6: HNL with e</td>
<td>FASER 2</td>
</tr>
<tr>
<td>BC7: HNL with μ</td>
<td>FASER 2</td>
</tr>
<tr>
<td>BC8: HNL with τ</td>
<td>FASER 2</td>
</tr>
<tr>
<td>BC9: ALP with photon</td>
<td>FASER 2</td>
</tr>
<tr>
<td>BC10: ALP with fermion</td>
<td>FASER 2</td>
</tr>
<tr>
<td>BC11: ALP with gluon</td>
<td>FASER 2</td>
</tr>
</tbody>
</table>
Neutrinos at the FPF

A huge number of high-energy neutrinos of all flavours will be detected by experiments at the FPF.

<table>
<thead>
<tr>
<th>Species</th>
<th>#evts* (20tn, 3/ab)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_e</td>
<td>115k</td>
</tr>
<tr>
<td>$\bar{\nu}_e$</td>
<td>65k</td>
</tr>
<tr>
<td>ν_μ</td>
<td>875k</td>
</tr>
<tr>
<td>$\bar{\nu}_\mu$</td>
<td>225k</td>
</tr>
<tr>
<td>ν_τ</td>
<td>1.7k</td>
</tr>
<tr>
<td>$\bar{\nu}_\tau$</td>
<td>0.7k</td>
</tr>
</tbody>
</table>

Highest energy neutrinos from a terrestrial source. Typical energy of interacting neutrinos on LOS ~900 GeV.

Large detectors and dataset will allow huge increase in number of neutrino interactions that can be recorded at the FPF experiments compared to FASERv (x20 luminosity, x10 target mass)

- large differences in expectations between different generators – numbers shown here the most conservative particularly for ν_τ where some generators predict more than a factor of two larger numbers
QCD at the FPF

- Neutrinos detected at FPF experiments can also be used to study QCD both in the neutrino production, and in neutrino interaction.

- Production mechanism, depends on neutrino flavour, rapidity and energy:
 - $\pi \rightarrow \nu\mu$, $K \rightarrow \nu_e$ (at high-energy/off-axis $D \rightarrow \nu_e$), $D \rightarrow \nu\tau$

Electron neutrinos at high energy and slightly off-axis, almost exclusively from charm decays.

Large differences between generators on rate of forward hadron production, especially for charm: SIYLL 2.3d (solid), DPMJet 3.2017 (short dashed), EPOS-LHC (long dashed), QGSJet II-04(dotted), and Pythia 8.2 (dot-dashed)
QCD at the FPF

Many interesting QCD topics to be studied at the FPF:
FPF Studies

A very preliminary first costing of the facility civil engineering works + services gives a cost estimate of 40 MCHF.

Recent studies:
- FLUKA simulation of expected muon flux at the FPF is ~0.5Hz/cm² at L=5x10^{34}cm²s⁻¹ (for the region within 1m of the LOS)
- Radioprotection study suggests that the cavern should be accessible during HL-LHC operations (with limited time (<20% occupancy), and some local restrictions)

To further civil engineering design / cost, a core to the cavern depth will be taken early next year.

Possible schedule for implementation of FPF:
- CE works done in LS3
- Installation of services and experiments – first years of Run 4
- Physics from mid-Run 4
Summary

• FASER is a new experiment at the LHC designed to
 • Search for light, weakly interacting new particles
 • Study high energy collider neutrinos for the first time
• Detector designed, constructed, installed and commissioned during LS2
• Physics data taking since the start of Run 3
 • Smooth operations
 • Excellent detector performance
• First physics results expected in Q1 2023

• The FPF is a proposed facility to house several BSM and neutrino experiments on the ATLAS collision axis line of sight
 • Strong and broad physics motivation with significant interest from the community:
 • BSM, neutrino physics, QCD
 • Studies on physics case, facility design and requirements of experiments progressing well
FASER Acknowledgements

FASER is supported by:

In addition, FASERν is supported by:

FPF studies supported by:
Backup...
The FASER Collaboration consists of 85 members from 22 institutions and 9 countries.
1. The FASER Detector
 arxiv: 2207.11427
2. The FASER W-Si High Precision Preshower Technical Proposal
 CERN document server
3. The tracking detector of the FASER experiment
 NIMA 166825 (2022) and arXiv: 2112.01116
4. The trigger and data acquisition system of the FASER experiment
 Journal of Instrumentation and arXiv: 2110.15186
5. First neutrino interaction candidates at the LHC
 Physical Review D and arXiv: 2105.06197
6. Technical Proposal of FASERv neutrino detector
7. Detecting and Studying High-Energy Collider Neutrinos with FASER at the LHC
 European Physical Journal C and arXiv: 1908.02310
8. FASER's Physics Reach for Long-Lived Particles
9. Technical Proposal
 CERN document server and arXiv: 1812.09139
10. Letter of Intent
 CERN document server and arXiv: 1811.10243

Further FPF references: https://pbc.web.cern.ch/fpf-resources
QCD at the FPF

- Neutrinos detected at FPF experiments can also be used to study QCD both in the neutrino production, and in neutrino interaction.
- Production mechanism, depends on neutrino flavour, rapidity and energy:
 - $\pi \rightarrow \nu\mu$, $K \rightarrow \nu_e$ (at high-energy/off-axis $D \rightarrow \nu_e$), $D \rightarrow \nu\tau$
Collimator dependence at FASER Trigger Rate

At start of Run 3 noticed FASER trigger rate was significantly higher for first ~10mins of fill. Rate drop correlated with movement of the TCL collimators (which are changed when the AFP Roman Pot detectors are inserted a few minutes into the fill). In order to understand this we did a dedicated scan of the TCL5 and TCL6 collimator settings to see how they effect the FASER trigger rate.

Following this, LHC changed the sequence so tight TCL6 collimator settings implemented at start of Stable Beams.
Emulsion Detectors

• Emulsion film made up of ~80μm emulsion layer on either side of 200μm thick plastic
• Emulsion gel active unit silver bromide crystals (diameter 200nm)
• Charged particle ionization recorded and can be amplified and fixed by chemical development of film
• Track position resolution ~50nm, and angular resolution ~0.35mrad
 • But no time resolution!
Linking FASERν with FASER

- Possibility to connect FASERν with rest of FASER for:
 - Charge identification
 - Improved energy resolution
 - Better background rejection

- Requires interface detector in front of FASER
 - Precision tracker to link FASERν and FASER tracks
 - Most likely a fourth station of spare ATLAS SCT modules

- Interface detector identical to other FASER tracking stations installed in December 2021
Thickness uniformity of the tungsten plates used for the FASERν detector was checked with a dedicated device developed by the Collaboration. The thickness was measured semi-automatically at 24 points on each plate, and the maximum difference among the 24 points was checked. A total of 1622 plates were measured, and 1562 plates with a difference smaller than 80 microns were selected as good quality, corresponding to 90% of the measured plates (left). Among them, 1460 plates are used to construct the emulsion detector. The mean thickness of the used plates is 1087 microns, with an RMS of 27 microns (right).
Dark Photons in FASER

- Simulations greatly refined by LHC data
- Production is peaked at $p_T \sim \Lambda_{QCD} \sim 250$ MeV
- Enormous event rates: $N_{\pi} \sim 10^{15}$ per bin

- Production is peaked at $p_T \sim \Lambda_{QCD} \sim 250$ MeV
- Rates highly suppressed by $\varepsilon^2 \sim 10^{-10}$
- But still $N_{A'} \sim 10^5$ per bin

- Only highly boosted \simTeV A' decay in FASER
- Rates again suppressed by decay requirement
- But still $N_{A'} \sim 100$ signal events, and almost all are within 20 cm of “on axis”

note this is an old slide, and FASER volume $R=10$cm now!
Targets in A' parameter space

- Muon $g-2$ Anomaly
- Loop-induced Coupling
- FASER probes an interesting region, even with the 1$^{\text{st}}$ fb$^{-1}$ of Run 3 data
- ^8Be and ^4He ATOMKI Anomalies
- Self-interacting Dark Matter

$\alpha_D = 0.5, M_{A'}/M_\chi = 1.5$

Slide from J. Feng
FASER Backgrounds & Radiation

- FLUKA simulations and *in situ* measurements in 2018 have been used to assess the backgrounds and radiation level expected in FASER.

- FLUKA simulations studied particles entering FASER from:
 - IP1 collisions (shielded by 100m of rock)
 - off-orbit protons hitting beam pipe aperture in dispersion suppressor (close to FASER) (following diffractive interactions in IP1)
 - beam-gas interactions

- Expect a flux of high energy muons (E>10 GeV) of 0.5cm^{-2}s^{-1} at FASER for 2e34cm^{-2}s^{-1} luminosity from IP1 collisions
 - Confirmed by *in situ* measurements in 2018 running (emulsion detector and TimePix BLM)

- Radiation level low due to dispersion function of LHC at the FASER location:
 - <5 x 10^{-3} Gy/year, <5 x 10^{7} 1 MeV neutron equivalent fluence / year
 - Do not need radiation hard electronics
SCT modules used had passed ATLAS QA in ~2005 and then been kept in storage. Important to test their functionality. SCT module QA at CERN in March 2019. Identified > 80 good spare modules – more than enough for FASER needs. Performance seems not to be degraded by long term storage/age.
Calorimeter – Initial QA

Testing of calorimeter modules at CERN in March 2019 with a source showed expected response in all modules tested.
The executive summary states (including the emphasis):
“The EF currently has a top-notch program with the LHC and the High Luminosity LHC (HL-LHC) at CERN, which sets the basis for the EF vision. The EF supports continued strong US participation in the success of the LHC, and the HL-LHC construction and physics programs, including auxiliary experiments.”

In section 2.7.1 Vision (immediate program) it is stated (all in emphasis)
“Our highest immediate priority accelerator and project is the HL-LHC, the successful completion of the detector upgrades, operations of the detectors at the HL-LHC, data taking and analysis, including the construction of auxiliary experiments that extend the reach of HL-LHC in kinematic regions uncovered by the detector upgrades.”

Neutrino Frontier Report (draft):
“Cross-pollination between Frontiers and other fields of science offers further opportunities. Physics topics within the Neutrino Frontier overlap strongly with each other, and also with other Frontiers. Potentially constructive interference at places of overlap between programs traditionally stewarded by different entities merits careful attention. Examples include instrumentation for dark matter and neutrinoless double beta decay searches, the study of neutrino-nucleus interactions, the detection of high-energy neutrinos with far-forward experiments at the LHC, and the connection between Cosmic Frontier programs and the study of neutrino properties. Also meriting attention are opportunities to make optimal use of national and international facilities for particle physics and other sciences.”
BSM at FPF

<table>
<thead>
<tr>
<th>Benchmark Model</th>
<th>FPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC1: Dark Photon</td>
<td>FASER 2</td>
</tr>
<tr>
<td>BC1": U(1)$_{B-L}$ Gauge Boson</td>
<td>FASER 2</td>
</tr>
<tr>
<td>BC2: Dark Matter</td>
<td>FLArE</td>
</tr>
<tr>
<td>BC3: Milli-Charged Particle</td>
<td>FORMOSA</td>
</tr>
<tr>
<td>BC4: Dark Higgs Boson</td>
<td>FASER 2</td>
</tr>
<tr>
<td>BC5: Dark Higgs with hSS</td>
<td>FASER 2</td>
</tr>
<tr>
<td>BC6: HNL with e</td>
<td>FASER 2</td>
</tr>
<tr>
<td>BC7: HNL with μ</td>
<td>FASER 2</td>
</tr>
<tr>
<td>BC8: HNL with τ</td>
<td>FASER 2</td>
</tr>
<tr>
<td>BC9: ALP with photon</td>
<td>FASER 2</td>
</tr>
<tr>
<td>BC10: ALP with fermion</td>
<td>FASER 2</td>
</tr>
<tr>
<td>BC11: ALP with gluon</td>
<td>FASER 2</td>
</tr>
</tbody>
</table>
Aside: Signals from heavy flavour decay

Number of π^0 and B mesons as function of angle wrt LOS and energy (for 150/fb).

Heavier B-mesons are more spread out around the LOS => only small fraction in FASER acceptance, but FASER2 starts to get into the bulk of the distribution.

Much better sensitivity for new LLPs produced in B decays (such as Dark Higgs) at FASER2 than FASER.

Expect in FASER2 angular acceptance in HL-LHC dataset:

$\mathcal{O}(10^{17})$ π^0

$\mathcal{O}(10^{17})$ η

$\mathcal{O}(10^{15})$ D mesons

$\mathcal{O}(10^{13})$ B mesons
BSM at FPF

Millicharged particles appear in models with massless dark photons. Improvement in sensitivity for this scenario by FORMOSA at the FPF, compared to milliQan detector installed as a central detector. FORMOSA sees up to ~250x signal rate compared to central detector location.
BSM at FPF

• Recent theory level studies on sensitivity to DM scattering in a LArTPC at the FPF (FLArE)
 • Consider both DM-electron and DM-nucleus scattering
• Very interesting sensitivity, probing the thermal relic region with the “right amount” of Dark Matter
 • Direct scattering, complementary method to “missing energy” (NA64/LDMX) signatures
• Opens door to direct-detection type DM search at a collider for the first time!

<table>
<thead>
<tr>
<th>Benchmark Model</th>
<th>FPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC1: Dark Photon</td>
<td>FASER 2</td>
</tr>
<tr>
<td>BC1’: U(1)_{B-L} Gauge Boson</td>
<td>FASER 2</td>
</tr>
<tr>
<td>BC2: Dark Matter</td>
<td>FLArE</td>
</tr>
<tr>
<td>BC3: Milli-Charged Particle</td>
<td>FORMOSA</td>
</tr>
<tr>
<td>BC4: Dark Higgs Boson</td>
<td>FASER 2</td>
</tr>
<tr>
<td>BC5: Dark Higgs with hSS</td>
<td>FASER 2</td>
</tr>
<tr>
<td>BC6: HNL with e</td>
<td>FASER 2</td>
</tr>
<tr>
<td>BC7: HNL with µ</td>
<td>FASER 2</td>
</tr>
</tbody>
</table>