

The micro-RWELL for R1/R2 Status & plans

G. Bencivenni

On behalf of DDG - LNF

L1=12,34µm L3=94,94m

L2=8.

L1=88,87µn

L3=55.14um

L5=48,27

LHCb Italia meeting - 15 Nov 2022

LHCb upgrade II (Run5 – Run6)

LHCb muon apparatus Run5 – Run6 option detector requirements

- Rate up to **1 MHz/cm²** on detector single gap
- Rate up to 700 kHz per electronic channel
- Efficiency quadrigap >=99% within a BX (25 ns)
- Stability up to **1C/cm²** accumulated charge in 10y at M2R1, G=4000

Detector size & quantity (4 gaps/chamber - redundancy)

- R1÷R2: 576 detectors, size 30x25 to 74x31 cm², 90 m² detector (130 m² DLC)
- R3: 768 detectors, siz 120x25 to 149x31 cm², 290m² det.
- R4 : 3072 detectors, size 120x25 to 149x31 cm², 1164 m² det.

$Rates (kHz/cm^2)$	M2	M3	M4	M5
R1	749	431	158	134
$\mathbf{R2}$	74	54	23	15
R3	10	6	4	3
$\mathbf{R4}$	8	2	2	2
$Area (m^2)$	M2	M3	M4	M5
R1	0.9	1.0	1.2	1.4
$\mathbf{R2}$	3.6	4.2	4.9	5.5
$\mathbf{R3}$	14.4	16.8	19.3	22.2
$\mathbf{R4}$	57.6	67.4	77.4	88.7

M2 station - max rate (kHz/cm²)

The µ-RWELL (reminder)

G. Bencivenni et al., The micro-Resistive WELL detector: a compact sparkprotected single amplification-stage MPGD, 2015 JINST 10 P02008

The **µ-RWELL** is a **resistive MPGD** composed of two elements:

- Cathode
- µ-RWELL_PCB:
 - a WELL patterned kapton foil (w/Cu-layer on top) acting as amplification stage
 - − a resisitive DLC layer^(*) w/ ρ ~10÷100 MΩ/□
 - a standard readout PCB with pad/strip segmentation

(*) DLC foils are currently provided by the Japan Company – BeSputter

The **"WELL"** acts as a **multiplication channel** for the ionization produced in the drift gas gap.

The resistive stage ensures the spark amplitude quenching.

Drawback: capability to stand high particle fluxes reduced, but **largely recovered** with appropriate **grounding schemes** of the **resistive layer**

The HR layout

The **PEP** layout (Patterning – Etching – Plating) is the **state of art** of the **high rate** layout of the μ -RWELL developed **for LHCb**

- Single DLC layer
- **Grounding line from top** by kapton etching and plating (pitch down to 1/cm)
- No alignment problems
- High rate capability
- Scalable to large size (up to 1.2x0.5 m for the upgrade of CLAS12)

QA & QC

The technology (based on **SBU** layout) has been **largely improved** in the last year, thanks to the introduction of the "**dry-electrical-cleaning**", a sort of a hot HV conditioning leading to a soft clean of the residual imperfections of the detector manufacturing.

Detector stability improved \rightarrow up to **200V** large plateau, estimated gain up to $4\div5\times10^4$ (to be measured).

Very preliminary

Optical metallographic survey (in ELTOS) as well as **SEM analysis** (at CERN) are used to take all construction steps under control as well as checking effects for possible aging/etching (by fluorine ...).

Technology spread

The **improvement of the quality and yield** is a clear **by-product of the technology spread** (lin particular CLAS12 upgrade at JLAB).

Cosmic ray setup @ LNF

Several **test facilities** in Frascati (LNF/ENEA), CERN (H8C) and PSI (PiM1) are exploited for detectors characterization. **Synergies** with external groups (Ferrara, Bologna, RM2-CLAS12) gave an important boost to the technology. For sure the involvement of other LHCb-Muon groups would be desirable in the near future, in particular in view of the phase of major commitment for the integration tests.

Technology transfer (I)

Technology transfer (II)

- Step 0 Detector PCB design @ LNF
- Step 1 CERN_INFN DLC sputtering machine @ CERN
 - Installed and commissioned beginning of Nov 2022
 - Operated by CERN + LNF (& INFN) staff
- Step 2 Producing readout PCB by ELTOS
 - pad/strip readout
- Step 3 DLC patterning by ELTOS
 - photo-resist ⊕ patterning with BRUSHING-machine
- Step 4 DLC foil gluing on PCB by ELTOS
 - double 106-prepreg ${\sim}2x50\mu m$ thick
 - PCB planarizing w/ screen printed epoxy \oplus single 106-prepreg
- Step 5 Top copper patterning by CERN (in future by ELTOS)
 - Holes image and HV connections by Cu etching
- Step 6 Amplification stage patterning by CERN
 - PI etching \oplus plating \oplus ampl-holes

Step 7 – Final electrical cleaning and detector closing @ CERN $% \mathcal{T}_{\mathrm{C}}$

CID: the CERN-INFN DLC machine

- Flexible substrates, coating areas up to 1.7 $m \times 0.6 m$
- Rigid substrates, coating areas up to $0.2 \text{ m} \times 0.6 \text{ m}$
- Five cooled target holders, arranged as two pairs face to face and one on the front, equipped with five shutters
- **Sputtering & co-sputtering different materials,** in order to create a coating layer by layer or an adjustable gradient in the coating
- Installation, week 43
- **Commissioning & training** of the CERN-INFN teams, week 44
- Next test-phase, week 47
- 1 week/month joint CERN-INFN test runs

Summary & Outlook

The advances in the **µ-RWELL technology** during the last two years lead to **large improvements** in **terms of stability** and **production yield**

- The challenge for the next two years is the **TT of resistive-MPGD** to the PCB industry (ELTOS)
- Key-point is the acquisition of the DLC magnetron sputtering machine co-funded by CERN and INFN that is going in operation in these days

Mid-term To Do List:

- Integration with the electronics (FATIC) developed by Bari group, with the goal of a better understanding of the requirements for a new dedicated ASIC
 - Test-bench in Bari within the end of the 2022
 - cosmic ray stand within spring 2023
 - Test beam (eff in 25 ns, OR/maj..etc vs gas mix) within summer 2023
- Optimization of the PEP layout & design of the M2R1/R2 proto-0 \rightarrow 2023/24
- Global irradiation (LNF X-ray tube, GIF++ w/Gas CERN group) → 2023/2024
- Eco-gas fast mixtures (???)

L1=83,76µm

Spare Slides

L2=88,87µm

Tentative schedule

	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
	RUN3			LS3		RUN4		LS4		LS4			
new HR layout design & test (w/X-ray)													
eco-gas searches													
CR/test beam with HR proto													
global irradiation test (GIF++ ?)													
finalizing design HR layout													
proto-0 construction & test													
TDR													
preparation mass production (ELTOS+ CERN)													
DLC production w/CID													
R1 - Production/test													
R2-M2/M3 - production/test													
R2-M4/M5 - production/test													
Installation/commissioning (?)													

La costruzione segue i seguenti step(*):

- CERN→ produzione DLC con macchina sputtering CID
- Eltos → PCB, DLC patterning & gluing
- CERN \rightarrow finalizzazione rivelatore con etching kapton (RUI)
- CERN → assemblaggio con frame e catodi e procedura di conditioning (RUI)
- CERN \rightarrow test finale rivelatori e integrazione elettronica (personale INFN)

(*) tempi e modalità di produzione definite con Rui & Eltos e considerando un solo «integration group»

High-rate layouts performance w/m.i.p.

he micro-RWELL layouts for high particle rate, G. Bencivenni et al., 2019_JINST_14_P05014