Sphalerons vs black holes
Results and progress update
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Goal: Investigate new machine learning methods to separate
sphaleron and black hole events

Datasets produced using BlackMax/Herwig7/Delphes:

1. Sphalerons, 9TeV sphaleron energy

2. Black holes, 10 TeV minimum mass
a. 2,4, 6 extradimensions

Separate training and testing data sets.




End-to-end classification using
computer vision inspired techniques
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https://arxiv.org/abs/1807.11916

Convolutional neural network

ResNet18.
Added circular convolution for panoramic images.
Takes in 50x50 = 2500 features (the image).

Outputs a tensor of values representing the classes, and the
maximum value gives the predicted class.

Metric: In the end we can calculate the % correctly classified in
each class, the accuracy.

Data augmentation: Random flips across n = 0 and random
rotations in @-direction, completely necessary for training
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Igor Slazyk Indico presentation

XGBoost

XGBoost — external open-source library (framework) based on the Gradient Boosting. In comparison to the regular Gradient Boosting
algorithm, the XGBoost increases speed and performance significantly.
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Major improvements:
* Parallelized tree building
* Tree pruning ‘

Efficient handling of missing data
* Regularization to prevent overfitting

* In-built cross-validation capability

* Hardware optimization
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https://indico.cern.ch/event/1145533/contributions/4808275/attachments/2430459/4161725/ISlazyk_Ensembles_Bagging%26Boosting_Preliminary_Implementation_of_XGBoost_(1).pdf

Binary classification
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ResNet18 results

Accuracy: 89.0%

After training 5 models for 30 epochs:

e Mean accuracy: 90.7%
e Standard deviation: 0.7%
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XGBoost results

Input features:

e Five most energetic hits in

o ECal
o HCal
o Tracks

After running the experiment 5 times:

e Mean accuracy: 86.1%
e Standard deviation: 0.1%

SPH_9TeV 90.36
BH_n4_M10

accuracy

Input features:

e First eight jets macro avg
e First two leptons

¢ MET weighted avg

precision

After running the experiment 5 times:

e Mean accuracy: 91.4%
e Standard deviation: 0.2%



Multi classification
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Accuracy: 50.0%

Resnet18 results
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XGBoost results

Input features:

e Five most energetic hits in

o ECal
o HCal
o Tracks

After running the experiment 5 times:

e Mean accuracy: 46.5%
e Standard deviation: 0.2%

SPH_9TeV 75.18

BH_n2_M10 40.56

BH_n4_M10 37.17

BH_n6_M10 41.68

Input features: accuracy 50.61

e First eight jets macro avg 48.65
e First two leptons

° MET weighted avg 48.65

precision

After running the experiment 5 times:

e Mean accuracy: 50.9%
e Standard deviation: 0.2%



Summary results

Resnet18 low level | XGBoost low level XGBoost high level
Binary classification | 0.907 +- 0.007 0.861 +- 0.001 0.914 +- 0.002

Multi classification 0.499 +- 0.006 0.465 +- 0.002 0.509 +- 0.002



Can we trust the CNN?

. SPH_9TeV
BH_n4_M10

e Softmax(y) transforms the output 1

vectory =[y., y,, ...] to a new vector
with values such that sum(y,) = 1 and
O<vy. <1.

Count

e Softmax(y) value interpretation:
o Close to 1 - very confident and right
o Close to 0.5 - very uncertain
o  Close to 0 - very confident and wrong

10!
e Majority are confidently classified right

e BH are much more likely than SPH to

be confidently classified wrong 0P 0.2 o ftmax(yo)-ﬁ 0.8 10




Discussion points

e How do we understand the predictions from the network.

o Not probabilistic values.
m Relation between softmax and how certain a prediction is?
o  Would we expect the same accuracy for ‘real life scenario’?
m Proposed statistical method using the softmax function to make “probabilities” from the
output vector
e Rafal and Kazuki have the details
m  We can make some experiments to simulate the effect of having just a few events
available. How many do we need to make conclusions?



Paper progress

e Paper draft has been started
e Results are in
e Justwriteit:)




For a given size of signal events, observed at the LHC with a given integrated lumi,
with what accuracy can we say Model-X is realised in nature?

« ML gives a “label” (a, f.7. :-*) to each signal event. We can assign some number (“probability”) to
a possible Model (A, B, C, ...) depending on the label.
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+ Using MC simulation, we can create a (normalised) “template” histograms for each model.

Model A Model B



* For a given size of signal events, observed at the LHC with a given integrated lumi, we can create the
same histogram.
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+ We compare the observed histogram with the template and calculate ;(2 ==> p-value
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+ Those p-values give us the likelihood that those models are realised in nature. The
likelihood is improved (gets smaller or larger) as the integrated luminosity increases.



