Gravitational Wave signature from QCD matter in Proto-Compact Stars

Workshop on the QCD Equation of State 2023

Pia Jakobus (PhD student)

A/Prof. Bernhard Mueller

Prof. Alexander Heger

- Stars with M > 8 M_s (H,He,C,Ne,O,Si)
- Iron final product of nuclear fusion
- Silicon shell burning accreting on PCS; M > 1.44 M_s
 - Core collapses

- Core bounces
- Formation of shock
- Neutrinos become trapped
- Photodissociation of heavy nuclei into nucleons
 - → Accretion shock at ~100-200km
- Hot Proto-Compact Star in interior accreting material
- Neutrinos decouple from Neutrinosphere
- Transport energy into "hot bubble region
 - → Shock revival?

 Late Proto-Compact Star fully transparent to neutrinos

Overview I: Core-Collapse Supernovae

0.5

0.6

Gravitational Waves from Core-Collapse Superno

- CCSNe ~3 event per century in our Galaxy
- Observable distance ~10-20 kpc
- Time changing mass quadrupole moment
- GWs provide access to compact inner core

Radius of Proto-Compact Stars ~40km to ~10km Mass accretion on PCS: ~1.4-2 M_{\odot}

- Different regions susceptible to different mode oscillations (p-,g- f-modes)
- Positive entropy gradient: g-mode oscillations
- Characteristic frequency of g-modes: Brunt Väisälä frequency:

$$\omega_{\rm BV}^2 = \frac{{\rm d}\alpha}{{\rm d}r} \frac{\alpha}{\rho h \Phi^4} \cdot \left(\frac{1}{c_s^2} \frac{{\rm d}P}{{\rm d}r} - \frac{{\rm d}\rho}{{\rm d}r}\right)$$

Stripy clouds

MONASH University

400

200

0.1

0.2

0.3

0.4

 $t - t_{
m bounce}$ [s] (Radice et al. 2019)

Electron antineutrino mean energy

MONASH University

(gwplotter.com)

	n_0	E_0	K	S	L	$R_{1.4}$	M _{max}
EOS	$[fm^{-3}]$	[MeV]	[MeV]	[MeV]	[MeV]	[km]	$[M_{\odot}]$
SFHo	0.1583	16.19	245	31.57	47.10	11.89	2.06
SFHx	0.1602	16.16	238	28.67	23.18	11.99	2.13
HS(TM1)	0.1455	16.31	281	36.95	110.99	14.47	2.21
HS(TMA)	0.1472	16.03	318	30.66	90.14	13.85	2.02
HS(FSUgold)	0.1482	16.27	229	32.56	60.43	12.55	1.74
HS(DD2)	0.1491	16.02	243	31.67	55.04	13.22	2.42
HS(IUFSU)	0.1546	16.39	231	31.29	47.20	12.68	1.95
HS(NL3)	0.1482	16.24	272	37.39	118.49	14.77	2.79
STOS(TM1)	0.1452	16.26	281	36.89	110.79	14.50	2.22
LS (180)	0.1550	16.00	180	28.61	73.82	12.16	1.84
LS (220)	0.1550	16.00	220	28.61	73.82	12.67	2.05
Exp.	~ 0.15	~ 16	240 ± 10^{1}	$29.0 - 32.7^2$	$40.5 - 61.9^2$	$10.4 - 12.9^3$	$\gtrsim 2.0^{4.5}$

Lattimer-Swetsy EoS (1991)
 Shen EoS (1998)

Lattimer, Swetsy: A generalized equation of state for hot, dense matter; 1991

Shen, Toki, Oyamatsu & Sumiyoshi: Relativistic equation of state of nuclear matter for supernova and neutron star; 1998

EoS effects in CCSNe

- □ Pressure
 - Structure, core-bounce,...
- □ Entropy
 - neutrino energy
- □ Composition
 - Weak interactions

- Radius: If PCS contracts faster an explosion can set in more easily (Janka, 2012,Suwa et al. (2013)); earlier (smaller BH mass)
- Stiffness: Neutrino luminosities increased; more efficient heating behind the shock
 - Symmetry energy: impacts PCS convection, lower symmetry energy S leads to lower core Y_e (Fischer et al. 2014)

Effective nucleon masses: larger m* decrease thermal pressure in core (Schneider et al. 2019, Andresen et al. 2021)

Equation of state in CCSNe

<u>SFHx EoS (Steiner et al., 2013) ($\rho > 10^{11} gcm^{-3}$)</u>

- Purely hadronic
- Class of 'HS' (Hempel & Schaffner-Bielich)
- Nuclei (several 1000) are treated as Boltzmann particles
- Nucleons described in RMF approach (non-linear Walecka model)
- Fitted to NS properties (2.13 M_s)
- Rather low slope parameter 23.2 MeV

<u>CMF EoS (Motornenko et al., 2020) ($\rho > 10^{11} gcm^{-3}$)</u>

- Hadron-Quark Chiral mean field model (CMF)
- Fitted to lattice QCD data
- Excluded volume effects supress Baryons at high μ_B
- 1st order nuclear liquid vapor phase transition
- Weak 1st order chiral phase transition at about 4 x ρ_{sat}
- Smooth deconfinement to quarks (Polyakov-loop as order parameter)
- Maximum TOV Mass 2.10 M_s

Low density regime

- ideal gas EoS of iron group nuclei; e, e^+, γ
- 5 GK < NSE with 470 different nuclei
- Nuclear reaction network below 5 GK

4/3/2023

Simulation CCSNe explosions

□ 4 simulations in axisymmetry

<u>Neutrinos in CCSNe:</u> *Physical, numerical, and computational challenges of modeling neutrino transport in core-collapse supernovae (Mezzacappa et al. 2020)*

- GR neutrino hydrodynamic code (Dimmelmeier et al. 2002; Mueller et al. 2013)
- Fast three flavor multigroup transport (FMT) for neutrinos (Mueller et al.,2010; Mueller and Janka 2015)

□ Inner 1.4 km calculated in spherical symmetry

- Gravitational wave signals show lower frequency g-modes
- Frequency depends on Equation of • State
 - 1. Where is signal originating from?
 - No signal in z35:SFhx? 2.
 - 3. Lower frequencies in CMF?

(Hz)

1) Where is the signal originating from?

- g-mode "lives" in convectively stable 1. PCS region beneath the PCS convection zone
- Higher turbulent convective energies 2. seen in CMF, particularly z35

(Abdikamalov et al. 2022)

(Abdikamalov et al. 2022)

MONASH University

MONASH 4/3/2023

Mode frequency very sensitive to speed of sound at around twice saturation density

Low frequency feature of mode lies within the sensitivity range of current GW detectors

WIIIIIII

6.9

 ρ_0

/3.5

R (km)

11.2

11.0

TCeP

 $t_1 = 0.126 s$

 $3\rho_0 4\rho_0$

 $\log \rho / \rho_0$

0.1

 $2\rho_0$

s/k_B≠0.5

 $Y_e = 0.25$

 10^{-2}

不

 $8\rho_0$

- Quarks are abundant in very low numbers
- Nucleon-nucleon interactions make EoS stiff
- Interplay of electron gradient in combination with a large $(\partial P/\partial Y_e)_{\rho,s}$ drives down B.V.f.

Motornenko et al: 10.1103/PhysRevC.101.034904 [Mar 2020] 10.1016/j.nuclphysa.2020.121836 [Jan 2021]

How do 2D and 3D compare?

Temperature and density comparison to NS-merger

(Most et al. 2022:arXiv-2201)

MONASH University

Thank you for your attention!

