Investigation of shear viscosity and the generation of anisotropic flow in a hybrid approach

Niklas Götz

in collaboration with Hannah Elfner

Exploring the QCD phase diagram

- Want to study the properties of nuclear matter at different densities and temperature
- Study the phase transition and possible critical point
- Build dynamical models to study the evolution of HIC
- Problem: different regions of the phase diagram need different theoretical language

Exploring the QCD phase diagram

- Theoretical description: If mean free path >> system size: hadronic transport, if system size >> mean free path: hydrodynamics
- Low beam energies: hadronic transport with nuclear potentials and resonance dynamics
- **High beam energies**: Non-equilibrium initial evolution + hydrodynamics + hadronic rescattering
- Hydrodynamics requires as an input an initial condition, equation of state as well as transport coefficients

 Karpenko et al.: PRC 91 (2015)
 Akamatsu et al.: PRC 98 (2018)
 Du et al.: Comp.Phys.Com. 251 (2020)

 Nandi et al.: PRC 102 (2020)
 Schäfer et al.: 2112.08724 Shen: 2001.11858

 Everett et al.: Phys. Rev. Lett. 126
 Kovtun et al.: JHEP 0310 (2003)
 Ghiglieri et al.: JHEP 1803 (2018)

Jacak, Müller: Science 337 (2012)

- If the two nuclei hit each other not directly, the resulting fireball will be elliptic $ightarrow \epsilon_2 > 0$
- Fluctuations of nuclei positions and color charges can introduce higher order eccentricities $\rightarrow \epsilon_3 > 0$
- The asymmetry of the initial state results in a pressure gradient in the fluid

Flow in heavy-ion collisions

ATLAS: PLB 707 (2012)

- Pressure gradient of the fluid causes anisotropic flow
- Azimuthal Fourier decomposition of yields:

$$rac{\mathrm{d}N}{\mathrm{d}\phi} \propto 1 + 2\sum_{n=1}^{\infty} v_n \cos n(\phi - \Psi_n)$$

- v_{2,3} are often approximated as a linear response to ε_{2,3} (ideal hydro: v₂ ≈ 0.2 − 0.3ε₂)
- Proportionality factor depends on the shear viscosity of the fluid

Qiu, Heinz: PRC 84 (2011)

Generation of anisotropic flow in a hybrid approach

4

Shear viscosity in heavy ion collisions

- Flow measurements: QGP behaves like an almost almost perfect fluid, but also evidence for small but nonzero shear viscosity η/s
- Evaluation of η/s in lattice QCD is challenging due to numerical problems
- Extraction from experiment difficult due to uncertainty of initial conditions

Ghiglieri et al.: JHEP

Niklas Götz

Non-constant shear viscosity

Denicol et al.: PRC 88 (2013)

- All known fluids have a temperature dependent η/s , and a minimum of η/s is predicted near transition
- Theoretical predictions for the hadron gas phase favour strong μ_B dependence
- Does non-constant η/s have a strong impact on the evolution and observables?

Generation of anisotropic flow in a hybrid approach

Gorenstein et al.: PRC 88 (2008)

- Parameterize η/s (T, μ_B) using available constraints
- Study the qualitative effect on bulk observables, especially elliptic flow, in comparison with constant η/s or η/s(T) in a hybrid approach
- Compare for low to intermediate energies ($\sqrt{s_{NN}}$ =7.7 39.0 GeV), where impact of μ_B is significant
- Study the generation of elliptic flow in a hybrid approach

Motivation

- Baryon stopping is important for the description of heavy-ion collisions at NA61/SHINE, BES and GSI/FAIR energies
- SMASH is capable of describing proton rapidity spectra across a wide range of collision energies
- Apply SMASH for the initial and final state in a novel hybrid model

Mohs et al.: J.Phys.G 47 (2020)

SMASH-vHLLE-hybrid

- Modular hybrid approach for the description of intermediate and high energy heavy-ion collisions
- Open-source and public
- Available on Github
- In good agreement with experimental data across a wide range of collision energies
- Conserves all charges (B, Q, S)

Schäfer et al.: 2112.08724 Weil et al.: PRC 94 (2016) DOI: 10.5281/zenodo.3484711 Cooper and Frye: PRD 10 (1974) Huovinen et al.: Eur. Phys. J A 48 (2012) Karpenko et al.: PRC 91, 064901 (2015) Karpenko et al.: Comput. Phys. Commun. 185 (2014)

SMASH

- Hadronic transport approach
- Initial conditions

+

vHLLE

- 3+1D viscous hydrodynamics
- CORNELIUS routine to determine freezeout surface

+

smash-hadron-sampler

- Cooper-Frye sampler
- Particlization of fluid elements

+

SMASH

- Hadronic transport approach
- Evolution of the late hadronic rescattering stage

Niklas Götz

SMASH-vHLLE-hybrid

- Initial Conditions: Particles propagate and interact until hypersurface of constant proper time (= passing time of nuclei) is crossed
- Fireball evolution: QGP phase is evolved according to chiral model EoS and given transport coefficients until hypersurface with constant energy density $\epsilon_{\rm switch}$ is reached
- **Particlization**: At ϵ_{switch} according to SMASH HRG EoS
- Afterburner: Final propagation and interactions. Collisions can be turned off

Steinheimer et al.: J.Phys.G 38 (2011)

Schäfer et al.: 2112.08724

Karpenko et al.: PRC 91 (2015)

- Simulating Many Accelerated Strongly-interacting Hadrons
- Numerically solves the Boltzmann-equation:

$$\partial_t f + \frac{p}{m} \nabla f + F \partial_p f = \left(\frac{\partial f}{\partial t}\right)_{coll}$$

- Describes dilute, microscopic, non-equilibirum systems
- Uses (by default) a geometric collision criterion $d_{\perp}=\sqrt{\sigma_{tot}/\pi}$
- Uses PYTHIA for high energy hadron collisions for string fragmentation and hard scatterings

Schäfer et al.: 2112.08724

- Decreases pion production and enhances kaon production
- Decreases width of proton rapidity distribution
- Hardens the midrapidity dN/dm_T spectra of pions, kaons and protons
- Improves agreement with experimental data at intermediate collision energies

Schäfer et al.: 2112.08724

- Good agreement of yields and mean p_T over a wide range of collision energies
- Decent agreement with experimentally measured flow for systems with long enough fireball lifetime

Ansatz

- Parameterization in (ϵ, ρ) instead of (T, μ_B) , as those quantities are evolved in hydrodynamic evolution
- Linear dependence on ϵ and ρ assumed
- η/s as approximation for $\eta T/(\epsilon + p)$ at finite μ_B

$$\eta/s = \max\left(0, (\eta/s)_{\mathsf{kink}} + egin{cases} S_{\epsilon,H}(\epsilon - \epsilon_{\mathsf{kink}}) + S_
ho
ho, & \epsilon < \epsilon_{\mathsf{kink}}
ight) \ S_{\epsilon,Q}(\epsilon - \epsilon_{\mathsf{kink}}) + S_
ho
ho & \epsilon > \epsilon_{\mathsf{kink}}
ight)$$

• Even for $S_{\rho} == 0$: implicit μ_B dependence

Parameterization of η/s

Constraints

- ϵ_{kink} is set to the critical energy density of 1 GeV/fm³
- $(\eta/s)_{\mathrm{kink}}$ is set to the KSS bound
- $S_{\epsilon,Q}$ is set to match the (N)LO-pQCD limit at T = 400 MeV
- $S_{\epsilon,H}$ is set to match η/s from box calculations in SMASH at ϵ_{switch} and $\mu_B = 0$

Parameterizations for comparison

1. comparison

effective, constant η/s

originally used in SMASH-vHLLE-hybrid

2. comparison:

 $\eta/s(T)$ from Bayesian inference

based on results of the JETSCAPE collaboration

JETSCAPE Phys. Rev. Lett. 126 (2021)

JETSCAPE PRC 103 (2021)

Niklas Götz

Effective shear viscosity

Time evolution of shear viscosity

Energy density weighted mean shear viscosity changes significantly during the evolution. Differences due to ρ -dependence are most significant in the beginning of the evolution.

Niklas Götz

Impact on bulk observables

 $\begin{array}{l} \mbox{Parameterisation in ϵ reproduces experimental results up to a similar degree than tuned effective} \\ \mbox{η/s} \\ \mbox{STAR PRC 86 (2012)} \\ \mbox{STAR PRC 96 (2017)} \\ \mbox{NA49 Phys.Rev. Lett. 80 (1998)} \\ \mbox{NA49 Phys.Rev. Lett. 73 (1994)} \\ \end{array}$

Flow contribution and response

Niklas Götz

Similar to earlier analysis in UrQMD hybrid (Auvinen et al.: PRC 88 (2013)) Using the constant, effective η/s

Flow contributions depending on ϵ_{switch}

Impact on flow results

 $\epsilon_{\rm switch} = 0.5 \ {\rm GeV}/{\rm fm}^3$ $\epsilon_{\rm switch} = 0.3 \ {\rm GeV}/{\rm fm}^3$ $\epsilon_{\rm switch} = 0.1 \; {\rm GeV}/{\rm fm}^3$ charged hadrons w at 20-30% centrality charged hadrons vs at 20-30% centrality charged hadrons vs at 20-30% centrality S'0.08s'^{0.08}- $c_{2} = 0.5$ $c_{2} = 0.1$ n/s(T) charged hadrons int. v charged hadrons int. v .≝_{0.06} n/s(c) n/s(c) charged hadrons ir consection of the charged hadrons ir --- n/s const === n/s const Comparison parameterizations: $\eta/s(T)$ $n/s(\epsilon)$ --- n/s const. 0.00 0.00 0.00 2030 40 10 2030 40 10 20 30 40 √s_{NN} [GeV] √s_{NN} [GeV] √s_{NN} [GeV] charged hadrons v2 at 20-30% centrality charged hadrons v2 at 20-30% centrality, charged hadrons v2 at 20-30% centrality, s'^{0.08}s'0.08-S'0.08+ $c_{-} = 0.1$ S. - 0.05 $S_{..} = 0.05$ $S_{..} = 0.05$ charged hadrons int. v charged hadrons int. $S_{-} = 0$ hadrons int. 0.04 ····· S. = 0 --- S. = -0.05 --- S. = -0.05 S - - 0.05 *o*-dependence: charged h 0.00 0.00 0.00 40 10 40 10 2030 20 30 20 30 40 JANN [GeV] $\sqrt{s_{NN}}$ [GeV] $\sqrt{s_{NN}}$ [GeV]

Elliptic Flow at the end of the hybrid evolution

 \rightarrow Cells with significant ρ do hardly contribute to flow

Flow for varying ϵ_{switch}

Elliptic Flow at the end of the hybrid evolution

 v_2 for $\eta/s(\epsilon)$ does not change as function of $\epsilon_{sw} \to \eta/s(\epsilon)$ close to shear viscosity in transport simulation Niklas Götz

SMASH generates initial conditions dynamically, resulting in non-zero initial flow and fluctuations in the 3D initial conditions, both have a major impact on the results \rightarrow study the effect of using different initial condition models!

T _R ENTo	IP-Glasma
 Generalized, effective parametric ansatz for reduced thickness function in the transverse plane \$\left(\frac{T_B^P + T_B^P}{2}\right)^{1/p}\$ Fluctuations, but no momentum space information Moreland et al.: PRC 92 (2015), JETSCAPE PRL 126 (2021) 	 Yang-Mills initial state model within CGC framework with impact parame- ter dependent saturation Describes both fluctuations of nucleon positions and color charges Provides radial flow and momentum anisotropy Schenke et al.: PRL 108 (2012), Schenke et al.: PRC 86 (2012)

Transverse plane profiles

Single Event

Average

Initial condition transverse plane profile for AuAu at 200 GeV and impact parameter b = 5 fm

Niklas Götz

Eccentricity for AuAu @ 200 GeV

Similar eccentricities for all three models.

Eccentricity-Flow Correlation

correlations.

Niklas Götz

Impact of initial transverse momentum

Without initial p_T , flow fluctuations at the same eccentricity become strongly reduced and the linear correlation increases. The total flow at midrapidity is reduced to to stronger longitudinal expansion.

Niklas Götz

Impact of initial flow

Correlations between initial state properties and final state flow for AuAu at 200 GeV, 20-30% centrality

Schenke et al.: Nuclear Phys A 982 (2019)

Niklas Götz

Initial and final event plane angle

200 GeV, 0-5% centrality

The initial event plane angle is randomly distributed. Due to the fixed collision plane, the geometric information affects hydrodynamic evolution to give a preferred final state event plane angle.

Niklas Götz

Impact of initial elliptic flow

Initial flow from SMASH contributes to final flow when no flow is generated from geometry!

Niklas Götz

Impact of initial triangular flow

For events with small triangular eccentricity, v_3 is neither generated by ϵ_3 nor initial momentum anisotropy \rightarrow contribution from afterburner dominant? Niklas Götz Niklas Gotz

Inital momentum anisotropy

SMASH IC, 0-5% centrality

$\epsilon_{p,2}$ is not a good proxy for initial flow.

Generation of anisotropic flow in a hybrid approach

34

Conclusions

- In the hybrid approach SMASH-vHLLE-hybrid, a parameterization $\eta/s(\epsilon, \rho)$ based on known constraints was tested
- The dependence on ρ was shown to have no significant impact on elliptic flow, it increases however the yield.
- Based on the virtually unchanged values of v_2 when changing ϵ_{switch} , the proposed parameterization could be a good proxy for η/s in the non-equilibrium hadronic transport stage
- Due to the lack of momentum-space information, $T_R ENTo$ realises much stronger the assumption of linear correlation between v_n and ϵ_n
- Correlations between initial and final flow for SMASH when eccentricity is low. For small eccentricites, SMASH and IP-Glasma produce higher flow.
- Momentum space anisotropy $\epsilon_{p,2}$ does not contribute to final flow

- Include a parameterization of ζ/s and study interaction of both viscosities
- Increase range of studied energies
- Study impact of different forms of the δf corrections in the sampling stage for the observed flows
- Study modes of the energy density and baryon density distribution of the initial condition and their impact on flow

SMASH and SMASH-vHLLE-hybrid are available at https://github.com/smash-transport. More information can be also found at https://smash-transport.github.io/.