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Astrophysical Phase Transition

Importance of Astrophysical PT:

Quark-gluon plasma is confirmed at high
temperature (collider experiments).
What about high density?

Still No earth-based experiments.

Natural laboratory are Neutron stars.
Renewed interest after detection of NS-NS
mergers.

What about phase transition in neutron stars.
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Neutron Stars: Birth

Formation of a neutron star (NS)

Life Cycle of a Star
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Neutron Stars: Properties

Properties of NS ==
Mass 1.2 - 2.4 solar mass - ”“5&/‘?&“
Radius 10 — 15 km

Period ms — sec

Density at core 104 — 10% gm/cc

RADIATION

Magnetic field  10'° G (max) SEAM
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Phase transition in isolated stars

Seeding of the quark core:

The seeding happens as the star slows down.

P (16° dyne/cnf)

Once the critical density is crossed the quark seed forms.

The seed grows as the star slows down further.
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Phase transition in isolated stars

A handful of stars:

The range of stars which attains a quark core
depends on the EoS.
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Phase transition in isolated stars

Initial configuration:
A density fluctuation at the centre of the star initiates a shock discontinuity.

As the shock propagates out deconfinement from HM to QM happens.
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Phase transition in isolated stars

Deconfinement transition:

m Conservation of mass

dp
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Phase transition in isolated stars

Deconfinement transition: GR1D code

The evolution equations can be obtained using - V,J* = 0, VpuTHY =0

In the coordinate frame where u* = (W /a, Wv/X,0,0) , W =,/ ﬁ is the Lorentz

factor and v is the physical radial velocity. (O’Connor and D. Ott, 2010)
m Evolution equation of rest mass density
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The conserved variables are function of primitive variables p, e , v and P.




Phase transition in isolated stars
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Phase transition in isolated stars

p(r,B8) at t=0us

Gravitational wave generation

The change in the density profile brings about
a change in the mass quadrupole moment

Results in the emission of GW
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Phase transition in isolated stars

Weak decay and Stability

Step 1: Deconfinement Step 2 : Weak decay
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Neu z 3-flavor
quark star quark star
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Phase transition in isolated stars
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Phase transition in isolated stars

le—22

Weak decay and GW

For a NS: Mass = 2.0 solar mass
Frequency = 50 Hz
Distance = 100 Kpc
Temp = 0.1 MeV
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Phase transition in isolated stars

Multitude signal from Phase transition

1. Neutrino generation: energy deposided at the surface 10%° — 10
Energy budget same as Gamma Ray Bursts
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Phase transition in isolated stars
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Phase transition in isolated stars

Summary:
1. Slow down of a neutron star can induce a quark core seed at the centre of the star
2. A shock discontinuity develops at the core and propagates outwards.

3. A two-step conversion process: Deconfinement of nucleons to 2-f quark. Weak decay
of 2-f quark matter to 3-f quark matter.

4. Deconfinement transition happens in microseconds and have bursts type strong GW
Signal. Frequency of the signal on the higher side.

5. Weak decay transition takes few 100 of milliseconds, also bursts type GW signal.
Frequency on the signal in the present detector capacity range.

6. PT can also have other type of signals: Neutrino generation, tilt angle evolution.



Phase transition in Binary NS

PrOblem Of AStrOphySICaI Phase Hanford, Washington (H1) Livingston, Louisiana (L1)
transition:

One of the most important discovery of
recent times
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Credit; NASA Visualization Studio




Phase transition in Binary NS
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Phase transition in Binary NS

Einstein Equation and Numerical relativity
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Phase transition in Binary NS

Initial Setup

LORENE code: Binary star code
Solves the constraints equation on a hypersurface

Evolution

Einstein Toolkit: solves the evolution

equations 3

GW extraction | o
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Phase transition in Binary NS
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Phase transition in Binary NS

Equal Mass binaries
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Small binary stars made entirely of hadrons: after merging gives stable
configuration

Intermediate mass binaries: hadronic star stable
hybrid HMHS ultimately collapses

Heavy mass binaries: Ultimately HMNS/HMHS every star collapses




Phase transition in Binary NS

Equal Mass binaries: 1.2 +1.2

Results shown for equal mass binary of 1.2 + 1.2 solar T ‘ : 1
mass binaries i |
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Phase transition in Binary NS

Unequal Mass binaries: 1.2 + 1.6

Initial configuration: Appearance of mixed phase region even before merging
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Phase transition in Binary NS

Unequal Mass binaries: 1.2 + 1.6
Had (At = —7.55 ms) HybA (At = —7.55 ms) HybB (At = —7.55 ms) HybC (At = —7.55 ms)
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Phase transition in Binary NS

Unequal Mass binaries: 1.2 + 1.6

Have same baryonic mass as that of 1.4+1.4
equal mass binary merger

Difference in the GW signal depending on
whether the merger product is HMNS or
HMHS

Difference is maximum for stars where mixed
phase appears earlier

At the moment of first contact the phase
difference spikes momentarily
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Phase transition in Binary NS

Unequal Mass binaries: 1.2 + 1.6 ?4 14
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Phase transition in Binary NS

Summary and Conclusion:

1. Numerical Relativity is needed for simulating BNSM

2. Difference in the GW signature depending on whether merging stars are NS or HS
3. After the merger the GW differs between HMNS and HMHS

4. Difference is prominent if the quark appearance is at low density

5. The onset point (of mixed phase) and the stiffness of the EoS can be gauged by
having several observation of the post-merger phase of BNSM for different binaries.
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Phase transition in Binary NS

Einstein Equation and Numerical relativity S e-Ke
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