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NS Observables
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● Mass 
● Radius
● Tidal Deformability

Antoniadis et al., Science 340 (2013)
Cromartie et al., NatAs 4 (2019) 72
Riley et al., ApJL 887 (2019) L21
Riley et al., ApJL 918 (2021) L27
Abbott et al., PRX 9 (2019) 011001
Coughlin et al., 480 (2018) 3 [Lattimer]
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Inverse Problems
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● Reconstructing the dense matter EoS using mass-radius observations of neutron stars (NSs)

● Analyzing GWs for inferring the properties of NSs 
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TOV Equations: From EoS to Stellar Structure
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MR Observables to EoS: An Inverse Problem
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The Bayesian Approach

Steiner et al., ApJL 765 (2013) L5

Raithel et al., ApJ 844 (2017) 156
8
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Automatic Differentiation
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● Train a neural network (NN) to output the MR curve from an EoS 

● Optimize the input (EoS) to obtain the desired output (MR curve)
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Procedure
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Back Propagation
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Data Preparation

•                      :   SLy / PS / DD2
•                      :   Piecewise Polytropes at (1.0, 1.4, 2.2, 3.3, 4.9, 7.4) [Raithel et al., ApJ  831 (2016) 44]

https://iopscience.iop.org/article/10.3847/0004-637X/831/1/44/pdf
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TOV Solver Network: Training

•                      :   SLy / PS / DD2

•                      :   Piecewise Polytropes at (1.0, 1.4, 2.2, 3.3, 4.9, 7.4)          [Raithel et al., ApJ  831 (2016) 44]

EoSs Generated: 3 x 100,000 

On exclusion of MR curves 
with maximum mass < 1.9 
Solar Mass: 228,569 EoSs
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TOV Solver Network: Performance

Accuracy : 99.9% 
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TOV Solver Network: Performance on SFHo
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Mock data: An Ideal Case 
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Mock data: A Realistic Scenario 
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EoS Network: Performance on SFHo
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NS Radius and Mass measurements
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Riley et al., ApJL 887 (2019) L21
Riley et al., ApJL 918 (2021) L27

Özel et al., ApJ 820 (2016) 28
Bogdanov et al., ApJ 831 (2016) 184
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Normal Distribution Fits to MR data 
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Comparison with Previous Works

  PRD  :  Fujimoto et al.
   AJ    :  Steiner et al.
ARAA  :  Özel et al.
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Comparison with Previous Works

  PRD  :  Fujimoto et al.
   AJ    :  Steiner et al.
ARAA  :  Özel et al. Abbott et al., PRL 121 (2018) 161101
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Summary 

● Trained a NN to replace the TOV 
Equations

● Inverted the NN to optimize the 
input layer (EoS)

● Reconstructed the EoS from Real 
Observations (post successful tests 
on mock data)

● Consistent with      limits from 
GW170817

S.S, K. Zhou, L. Wang, S. Shi, H. Stöcker: JCAP 08(2022)071
S.S, K. Zhou, L. Wang, S. Shi, H. Stöcker: arXiv: 2209.08883
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Inverse Problems
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● Reconstructing the dense matter EoS using mass-radius observations of neutron stars (NSs)

● Analyzing GWs for inferring the properties of NSs 
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GWs : Ripples in the fabric of space-time

32

Massive accelerating objects disrupt space-time and emit 
Gravitational waves.
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http://www.youtube.com/watch?v=WgE6lb_i78A
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Listening to Cosmic Whispers - aLIGO & Virgo

34

LIGO Livingston Credit: Caltech/MIT/LIGO Lab 
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Simulation of GW Waveforms from mergers of BBHs and BNSs
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• LALSuite Library to generate simulated signals
• Model: IMRPhenomPv2_NRTidal (Frequency Domain)
• Inputs: m1, m2, Λ1, Λ2  (Note: For BHs, Λ = 0)
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Classification of BBH signals, BNS signals, and Noise

36

• For pSNR ≥ 0.75, accuracy ≥ 98%

• For pSNR = 0.50, train longer?
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Classification of BBH signals, BNS signals, and Noise.

37
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● Classification 

● Regression?
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Regression - mass & tidal deformation
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Regression - chirp mass & combined tidal 
deformation

40
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Regression - chirp mass & combined tidal 
deformation
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Predicting Chirp Mass

42

Channel 1: Absolute Value, Channel 2: Argument Training Examples: 55055, Test Examples: 19945
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Predicting Combined Λ

43

Channel 1: Absolute Value, Channel 2: Argument Training Examples: 64532, Test Examples: 10468
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Predicting chirp mass and combined Λ 
simultaneously

44

Channel 1: Absolute Value, Channel 2: Argument Training Examples: 33686, Test Examples: 18718
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Predicting chirp mass and combined Λ 
simultaneously

45

Channel 1: Real part, Channel 2: Imaginary part Training Examples: 41588, Test Examples: 14808
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Predicting chirp mass and combined Λ 
simultaneously (Signal + Noise)
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Training Examples: 36000, Test Examples: 12000Channel 1: Real part, Channel 2: Imaginary part
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Learning Curves (Signal + Noise)
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Summary 

● Classification of GW signals from mergers of BBHs, BNSs and noise.

● Regression of mass and tidal parameters from GW signals of BNSMs.

○ Without noise 

○ With white noise

○ With detector noise?

S.S, K. Zhou, J. Steinheimer, H. Stöcker: (in preparation)
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Thank you.

Email: soma@fias.uni-frankfurt.de
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Why 7.4ρ0?
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We set the last point, ρ = 7.4 ρ0, following the results of Read et al. (2009) and 
Özel & Psaltis (2009) who found that the pressure at this density determines 
the NS maximum mass and that pressures at higher densities do not 
significantly affect the overall shape of the resulting MR curve. 

[Raithel et al., ApJ  831 (2016) 44]

https://iopscience.iop.org/article/10.3847/0004-637X/831/1/44/pdf
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How do P affect the MR curve?
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[Özel and Psaltis 009, PhRvD, 80, 103003]

P1 = P(ρ = 1.85ρ0)
P2 = P(ρ = 2ρ1= 3.7ρ0)
P3 = P(ρ = 2ρ2= 7.4ρ0)

The first three panels show the change in the 
predicted relation when the values of the 
parameters P1, P2, and P3 are varied by 25% in 
each direction away from the best-fit values for 
the equation of state. 
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Comparing M-Λ and chirp mass - combined Λ
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Tidal Deformability Doppelgängers

53

arXiv:2208.04294
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Tidal Deformability Doppelgängers
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arXiv:2208.04294
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Stiff and soft doppelgängers
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Pressure-density histograms for the set of 
doppelgängers identified from the randomly-generated 
sample of PWP EoSs, for which the parametrization 
starts at 0.5ρ_sat. We classify each EoS in a given pair 
of doppelgängers as “stiff” or “soft” based on the 
pressure at the first fiducial density, and we plot the 2D 
histograms for each subclass in red and blue 
respectively. The general doppelgänger behavior is 
caused by allowing for a phase transition at densities 
near the nuclear saturation density ρ_sat. The onset of 
the phase transition can be pushed to higher densities 
by adopting more restrictive nuclear input.

arXiv:2208.04294
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Speed of Sound
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WaveNet - An Autoregressive Network

Causal Series
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WaveNet - An Autoregressive Network
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1D Convolutions - Preserving Order
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Learning Curves

Number of Epochs : 3000

Number of Layers : 10 
Dilations : 1, 2, 4, 8, 16, 32, 16, 32, 64

Padding : ‘causal’
Activation function : ‘elu’ (last layer - sigmoid)
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Classification Network
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Regression Network
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Mock data
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Behind the Scenes
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Behind the Scenes
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Behind the Scenes
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Behind the Scenes
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EoSs and corresponding MR curves
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EoS Parameters
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The Bayesian Posterior 
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Likelihood-based methods 

Markov Chain Monte Carlo (MCMC) : Likelihood-based sampler used to draw samples 
from the posterior.

Nested Sampling, etc.
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Likelihood-free inference methods : Deep Neural Networks

If it is possible to sample d ∼ p(d|θ) (i.e., simulate data) one can alternatively use 
simulation-based (or likelihood-free) inference methods.

For Gravitational Wave (GW) inference, deep neural networks (DNNs) have also been 
shown to achieve similar accuracy to MCMC.
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Deep Neural Networks : Pros?

● When rapid results are desired—for alerts to trigger electromagnetic follow-up 
of transient phenomena—computational efficiency makes all the difference, by 
using either fast models or specialized inference algorithms.
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Deep Neural Networks : Cons?

● Can it generalize to out-of-distribution (i.e., data inconsistent with the training 
distribution) data? 

● Insufficient training?
● Lack diagnostics to be confident in results.

These powerful approaches are therefore rarely used in applications where accuracy 
is important.
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Importance Sampling

● Start from a collection of n samples θi ∼ q(θ|d) (the “proposal”)

● Assign to each sample an importance weight wi = p(d|θi)p(θi)/q(θi|d)

● For a perfect proposal, wi = constant 

● Number of effective samples is related to the variance, neff = (∑i wi)²/ ∑i (wi²)

● The sample efficiency 𝛜 = neff/n ∈ (0, 1] arises naturally as a quality measure of the 
proposal
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Importance Sampling

● Importance sampling requires evaluation of p(d|θ)p(θ) rather than the 
normalized posterior

● The evidence can then be estimated from the normalization of the weights as 
p(d) = 1/n ∑i wi 
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Importance Sampling for EoS reconstruction

● TOV Solver trained on 4 low-density EoSs             Bias at low-densities while reconstructing the EoS

● Several M-R curves sampled from the uncertainty 
distribution of data. Each reconstructed curve is 
fitted to these M-R samples rather than the mean
M-R curve.

● Importance sampling to correct bias

Özel et al., ApJ 820 (2016) 28 
Bogdanov et al., ApJ 831 (2016) 184 

Riley et al., ApJL 887 (2019) L21
Riley et al., ApJL 918 (2021) L27
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Importance Sampling for EoS reconstruction

● neff = (∑i wi)²/ ∑i (wi²) ~ 90.2

● Samples ~ 1759

●  𝛜 = neff/n ~ 5.13 %

Calculating the sample efficiency :

Apply a cut-off and 
reweight the samples accordingly

Özel et al., ApJ 820 (2016) 28 
Bogdanov et al., ApJ 831 (2016) 184 

Riley et al., ApJL 887 (2019) L21
Riley et al., ApJL 918 (2021) L27


