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Introduction

@ Shock wave = Supersonic disturbances in the medium.
e In daily life we can encounter it when airplanes break through the sound
barrier.

@ Shock waves can also be formed in many known astrophysical events like
supernova collapse, when the stellar wind encountering medium, etc.

@OG

Mach Number M =0 M<1 =

Source: scienceabc.com

@ Across a shock front, there is always an abrupt change in the
thermodynamic quantities.
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Hydrodynamic Equations in Non-Relativity

(Newtonian)

e Three basic conservation equations: Mass, Momentum, and Energy.

@ General form of continuity or conservation equation:
Oo(density of the quantity) + O1(flux of the quantity) = 0

Shock Front

Oop + 01(pv) =0 | .

do(pv) + O1(p + pv?) =0
0

1 1
Oo(pe + §pv2) + 01(v(pe + 5,0”02 +p))

Frame of reference

@ From the shock frame of reference these equations become jump
conditions also known as Rankine-Hugoniot equations.

e Using these jump conditions along with an equation of state we can study
the NR shocks and their application.
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Conservation of particle Number or mass flux gives
Pa¥la = PbUb

Conservation of Momentum flux gives
PaU?L + Pa = pbvl% + Py

Conservation of Energy flux gives
Wy + %vg = wp + %vg

Using these three equations we can derive a velocity-free equation known
as the combustion adiabat equation.

1(1_'_1)( )
Wy — Wq = | — — | \Pb — Pa
2 Pb Pa

Velocity of upstream and downstream matter

_ [/ (Pp—Pa)Py _ [ (pb—pa)pa
® Va = (Pb—pPa)Pa ® Up = (po—pa)pPob
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Hydrodynamic Equations in General Relativity

(Einstein’s)

e In astrophysical scenarios, shock waves propagate at speed comparable to
the speed of light.

e Generally curved space-time conservation equations take form like

—~
—_
~—

V(nut) =0
vV, T =0

—~
DO
~—

@ 1st equation is particle number conservation.
@ 2nd equation contains energy and momentum conservation.

e Using energy-momentum tensor and four-velocity, we find the
hydrodynamic equations.
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Special Relativistic Hydrodynamic Equations

Special Relativistic

e In special relativistic case, V,, — 0,

o ds? = —dt>+dr?+r%(d§?+sin® 0dd?) G et e one
o u' = (v,7v,0,0)
_ 1
where, v = ——
o TH = wutu” + pgh” |
where, w =€+ p - Surface.

e Using eqn 1 and 2, we can write
dynamic equations as,

9o (nu’) 4 01 (nu') = APA, — {—1, For SL ¥
+1, For TL X

> = Hypersurface
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Rankine-Hugoniot Equations to Study SR Shocks

e In relativity, space and time are on the same footing so in this case we get
two kinds of shock waves (depending upon the frame of reference).

Space — Like Time — Like
e Conservation of particle Number e Conservation of particle Number
flux gives density gives
NaVaYa = NMbUVbYb NaYa = NMbYb
e Conservation of Momentum flux e Conservation of Momentum
gives density gives
2.2 _ 2,2 2" 2
WaYaVa + Pa = WbV V) + Pb WaYaVa = WHYj Vb
e Conservation of Energy flux e Conservation of Energy density
gives gives
2, 2 2 _ 2
WaYaVa = WoYp Vb WaYa — Pa = Wby — Pb

e Velocity of upstream and downstream matter
_ (Gb—ﬁa)(€a+pb)

(Pb—Pa)(eptPa) @ Vg,

Q@ Vg = (ep—€a)(€a+Dpp) - (pb—pa)(€b+pa)
— (Pb—pa)(€a+pp) e, e
VRS 0w =/ Ee
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General Relativistic Hydrodynamic Equations

o ds? = —e22(dt? + e2MMdr2 4 12 sin? Odp?
o T = wutu” 4 pgt”

dr
o uMt = fyg(l,v,0,0) where, v, = [62¢_621A Ve and v = i

@ From eqn 1 and 2,

0
% + 01 (10g(nu16¢(r)+A(7"))) 0
nu
TlO
8% + Oh (log(T11 2A(T))) =0
aOTOO

r + 01 (log(TOT e+ ) — g

e Similarly, we can write Rankine-Hugoniot Equations in the GR case
under similar considerations.

Anshuman MAGIC23 March 31, 2023



Rankine-Hugoniot Equations to Study GR Shocks

Space — Like

e Conservation of particle Number flux
gives
na’Yga’Ua Aa) — nb/ygbrube(qsb‘i‘/\b)

e Comnservation of Momentum flux gives
WaYgaVa€® ™ 4 Pa = woygvi e 4 py

e Conservation of Energy flux gives
wa,ygavae(3¢a+Aa) — wb,ysbvbe(3¢b+/\b)

e(¢a+

Time — Like

e Conservation of particle
Number density gives
NaYga = Mb7Ygb

e Conservation of
Momentum density gives
WaYgaVra = WpYopVrb

e Conservation of Energy
density gives

2 D _ 2 Pp
WaYga— 622(1 — ’lUb’ng— 2bp

e Velocity of upstream and downstream matter

Defining,
Ay = ed)“, Ay = €¢b,
B = eA“, By = BAb

We = (Pa + €a), wo = (pp + €p)

a1 = Ajw? — A3 (pa(py + 264 — €) + 2ppep — Poea + €a€p)
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Velocities across the front

b = \JwPAS — w2AS — 24%a;,

B
€11 = Ag A4(pb + €a)(€a — €b)

as1 = AA3[B2w? — Bi(ey, — pv)(€a — pa)] — 2B1(Adpaca + Alpres)

b21 = waAlAz \/A%A%(Bil’wg — B%wg) -+ 235&21
co1 = By (A3pa + Afey)(A3pa — ATpy)

Space — Like

o U — a11twabii o UL — ’UaBl(Azll'waWLAgwb_bll)
@ c11 b 2A3 A2 Ba[pates]

Time — Like

Al(a21 ba1) 'UaA2(B2wa+B1wb+w A1A2)
® Vo= 2c21 ® Up = 2B2[A1pp+Aceq]
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Taub/Combustion Adiabat Equation

Special Relativistic

° <w—3 — w—’%> + (pp — pa) (% + %) = 0, Same for both SL and TL Shock.
a b

n2 ng
General Relativistic

e Space — LikeTA

w%eQ(Ab+¢b) wg€2(Aa+¢a)
(pb _pa> [ 4 - 4 ] -
nb na

Wwpe
2 2.0,
nge®  n2e?

(

e Time — LikeTA
[ b Pa ] w2e??e  wpe??v | (L — ) w2 wg ] 0
o2p 2ba 4 e2ha ngeQAb n? n2 n2e2ha ngeQAb =

@ On putting A =¢=0= A, = ¢, = Ay, = ¢ = 0, the general relativistic
line element reduces to relativistic line element and we recover all the

Ay waeAa wge(3¢b+Ab) w26(3¢a+Aa) 0
nd B n4 a
b a

results of special relativistic shocks.
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Application-1: The Schwarzschild Metric

~1
o ds® = g datdr’ = — 1= | g2+ [ 1-2M | qdr24r2(dh?+sin’(0)dp?
K r r

o THY = wuru” + pgt”

062(]5:(1%)
1
062A2<1M>

o u* =1,4(1,v,0,0) where, v, =

M 2 _%
\ <1T> —v

@ Here, r and M will be the same for both upstream and downstream of the
shock since the thickness of the shock wave is considered to be negligible.
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Jump Conditions and Velocities

Space — Like Time — Like
o Conservation of particle e Conservation of particle Number
Number flux gives density gives
NaVaYga = MbUbYgb NaYga = Mb7Ygb
e Conservation of Momentum e Conservation of Momentum
flux gives2 . . density gives
a2, 02 2 2
Pa + % = py + % Wa"YgaVa = WhVgpVb

. e Conservation of Energy density
e Conservation of Energy flux

. gives
gives wa,72a_ Pa — wb,be_ Pb
WaYiaVa = WYapUt 7 (1-2) (1)
2
2 (1_¥)2(pb_pa)(pa+6b) ° 'U2 — (1_¥) (eb—€a)(Pptea)
® Ya= (cb—ca) (PyFca) @ = T (pp—pa)Pater)
2
2 (1_¥)2(pb_pa)(pb+€a) 0 v2 — (1_¥) (ep—€a)(Patep)
° Ub o (eb_ea)(pa'i‘eb) b — (pb_pa)(pb“‘ea)

e Combustion/Taub Adiabat for both SL and TL Shock:

w2 w we 4wy | —
w s | oy —pa)| 5 5z ] =0
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Application-2: Inside a Neutron Star

e If a shock wave produce and propagate from the center to the surface.
@ A combustion process can happen inside an NS due to shock propagation.

e We will use upstream matter as hadronic and downstream as quark.

Shock-induced combustion inside a NS

e In the relativistic case, things were easy, we need only equation of states
to solve the TA/CA.

@ But in the general relativistic case, we also need a variation of the metric
potentials along with the equation of states.

@ So, for the variation of metric potentials we will use TOV Equations to
model a spherically symmetric, non-rotating, static neutron star.

r [p(r)+€(r)][M (r)+47r®p(r) dM
° d]ji(r) = —= r[r[—2M(r)] o) ° % = dme(r)r?
dA A dgb 1 2 2A
Y % = %[(87‘(’67"2 — 1)62 4+ ].] o % = ﬂ[(8ﬂ'p7" + 1)6 — 1]
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Shock-induced combustion inside a NS

e Actual maximum mass of NS and QS corresponding to their EoSs are
2.42 My and 2.10 Mg respectively.

500 % QM(b-EoS)-GRSL @ HM(a-EoS)
o QM(b-EoS)-GRTL 4 QM(b-E0S)-SR(SL/TL)

)

p [M eV/fm?]

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.2 03 0.4 05 0.6 0.7 0.8 0.9 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5
n [fm™3] R [Km]

e Using relativistic TA/CA equation, the mass of phase transitioned QS
comes out to be 1.95 M.

e While, using GR space-like and time-like TA/CA, it comes out to be 2.02
Mg and 2.03 M respectively, which agrees with the M-R curve of QS.

e Using velocity values we can also guess the type of combustion process.

e v, > v, = Deflagration & v, < v, = Detonation
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Velocities of Upstream and downstream matter
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Other Important Results - 1: Luminous Velocity

@ In the velocity curve, there are some points where the velocity of
upstream or downstream or both upstream and downstream matter
become luminous.

e Considering a fixed upstream pressure and energy density value we can
find the possible downstream pressure and energy density values at which
velocity become luminous.

Condition For v=1

o In Relativistic Case
2 4 2 _
va_l_vb jpb—eb"i_pa_ea

e In General Relativistic Case
Space — Like

9 L hi4+ho+hs+hy
o v 1l=p,= A3(A3+B7)(Af(pates)+Bi(ep—e€a))
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Condition For v=1

k((A]B1Bowg+A3B1 Baep)—(patep)AS B3 As— A1 B? Ale,,)

® Uy AZB;1 (A1 B1—kA>By)

~1=p,=

where,
hi = AYB2w?, k = 1.00001
hy = ASBle,(eq — €p)
hs = A1 A5pa(pa + €)
ha = AT A3 BT (pa(es — 2€a) — €acy)

Time — Like

As(AsG1+A,G3)
A1 (A13e,+A12G4+A1 B1G5+A2B1%p,)

\S)

o v 1l=p,=

- . h,AQ[Al(B1€b+32pa_B2€a)_AQBlpa]
o vy =1 =pp= A1(A1By—A3By)

where,
G1 = (A1°ea” + 2A1Bipaca + B1°p.”)
G2 = (—Bipacy + Bieaey, — Bapa® — 2Bapaca — Bacy?)
G3 = —A %6, + A1G2 + B12paeb
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Condition For v=1

G4 = —(Agea — 23161,)
G5 = (—Aapy + Aseq + Biey)
h = Constant.

SR GR
soof j . oot 1000 T T
i‘a voves 1 Region (F) => Forbidden : ¢ pP=€
Region (A) => (v, < vp < 1) ¢ VaiVb= ] _ H e Va=1 % 2
Region (B) = (Vs > Vs > 1) goo-Region (A) => (1 <v;, > va) Pt 7 B
600} Region (C) => (vp < Vo< 1) Region (B) => (1> v, > vp) : J
—_— Region (D) => (vp > v, > 1) —_ :
> > e00f .
[P} O H
S 400 S :
. [— H
o o, 40 ; A
: B
200F i E
(Forbidden) ; 200 P, F '
e Y il i i i e b I
7777777777777777777777777 F H
ok : B (Forbidden) N . FoO AL A B
0 200 400 600 800 0 200 400 600 800 1000
€ [MeV] € [MeV]

e Plots will change with the change of initial conditions (p, & €,).
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Other Important Results - 2: Entropy Across Front

e For Special Relativistic SL/TL Shocks:

S0 — 50 = o A (9 — pa)® + Ol(py — pa)] + ..
e For General Relativistic SL. Shocks:

56— Sa = 12,ulaTa 828(52‘/) (Py = Pa)’ + Ol(ps — Pa)*] + ...
@ For General Relativistic TL Shocks:

A 2uame(p2—pl)—8(;’;;/))+B8 ny)

Sp — Sa =

+ ...

2
(2fb 92Tapa+C 247 ) +D 25

where,

ga:&%agb:ﬁafa:%afb:%

A= 6Pb(fb9a — fagb)(fbga + fa9b)

B = (po — Pa)*(f£ 92 (2P0 + pa) — 3f395Db)
(fb ga(2pb Pa) — [3951b)

D Db (pb pa)(fbga — fagb)(fbga + fagb)

Anshuman MAGIC23 March 31, 2023



Other Important Results - 3: The CJ Point

The Chapman—Jouguet point is a point at which chord (Rayleigh Line) =
tangent to the combustion adiabat.

A

Ay A, [Rayleigh Line]

Aq

(0] \ \ \ \ \ =

2000 2500 3000 3500 4000 4500 5000
X' [M eV fm?]

o For Special Relativistic SL e For General Relativistic SL
Shock: Shock: 2 o

2

2 2 Uy, =

Ub — usb b [eSAb (1—U§b(62¢b—62Ab))]
e For Special Relativistic TL e For General Relativistic TL
Shock: Shock:
2 20y 1

2 1 . 2 'U/2 — Ugsp€

o = 27 Usp b [P0 (u2 (26 —e?M0) —1))]
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Summary

@ We have derived the Rankine-Hugoniot Equations in a general relativistic
background.

@ Velocities of upstream and downstream matter are also shown.

e We have got different Taub adiabat/Combustion adiabat equations in the
GR case.

e We have studied an application of shock wave in an isolated Neutron star
using GR and SR shock formulations.

@ We have also discussed several other important results.
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