

Bayesian inference of the EoS of dense nuclear matter from heavy-ion collision data

Manjunath Omana Kuttan, Jan Steinheimer, Kai Zhou, Horst Stöcker

Density dependent EoS in UrQMD

- ♦ A density dependent potential enters the QMD equations: $\mathbf{r}_i = \frac{1}{\partial \mathbf{p}_i}, \quad \mathbf{p}_i = \frac{1}{\partial \mathbf{p}_i}$
 - \succ The potential energy term of the Hamiltonian ${f H}$ is density dependent.
- The potential energy $V(n_B)$ is related to the pressure as:

$$P(n_B) = P_{
m id}(n_B) + \int_0^{n_B} n' rac{\partial U(n')}{\partial n'} dn' \ , \ U(n_B) = rac{\partialig(n_B\cdot V(n_B)ig)}{\partial n_B}$$

 $U(n_B) \Rightarrow$ single particle potential, $P_{id}(n_B) \Rightarrow$ pressure of an ideal Fermi gas of baryons

constraining the potential energy $V(n_B) \Rightarrow$ constraining the EoS

 $\partial \mathbf{H}$

EPJ C 82.5 (2022): 1-12.

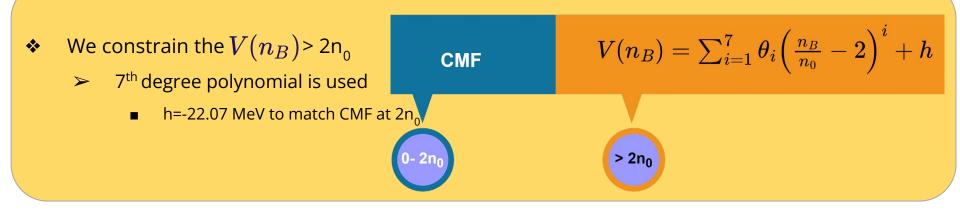
 $\partial \mathbf{H}$

 $\partial \mathbf{r}_i$

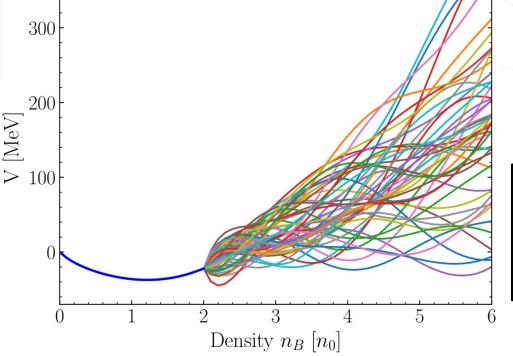
EPJ C 82.10 (2022):

Parameterisation of the potential energy

- Upto 2n₀, EoS reasonably constrained by
 - flow data at moderate energies P. Danielewicz, Et al Science 298, 1592 (2002), H. Kruse, Et al. Phys. Rev. Lett. 54, 289 (1985)
 - nuclear incompressibility data Y. Wang, Et al. PLB 778, 207 (2018)
 - bayesian analysis s. Huth et al., Nature 606, 276 (2022)
- Upto 2n₀, CMF model-fit is used A. Motornenko et al., PRC 103.5 (2021), A. Motornenko et al., PRC 101.3 (2020)



Few examples...



$$V(n_B) = \sum_{i=1}^7 heta_i \left(rac{n_B}{n_0} - 2
ight)^i + h_i$$

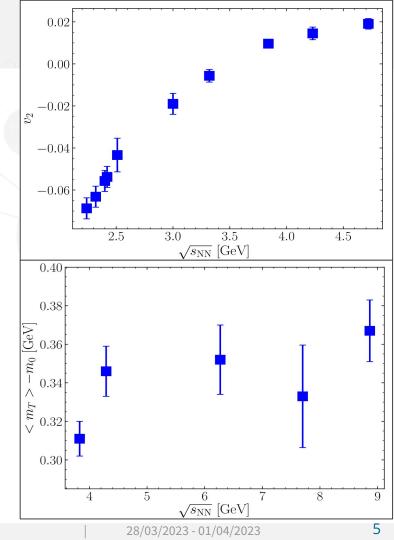
We constrain the polynomial coefficients

$$oldsymbol{ heta} = \{ heta_1, heta_2, \dots, heta_7\}$$

The experimental data

- Proton observables (mid rapidity)
 - > Elliptic flow : 10 data points
 - E895, CERES, FOPI, STAR, HADES
 - Mid-central collisions
 - Transverse kinetic energy: 5 data points
 - E802, NA49, STAR
 - Central collisions

The data,
$$\mathbf{D}=\{v_2^{exp},\langle m_T
angle^{exp}-m_0\}$$
 is used to constrain the parameters $oldsymbol{ heta}$.



MAGIC23, Kerala, India

Fast emulators are necessary

- Bayesian inference involves numerous UrQMD simulations
 - UrQMD ~100 s/event

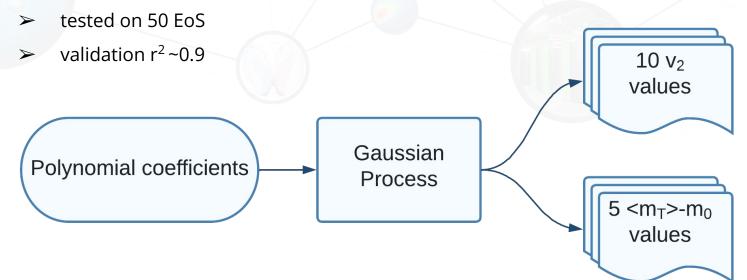
observable	No of beam energies	No of events per beam energy
V ₂	10	12000
<m<sub>T>-m₀</m<sub>	5	1000

- For one parameter set ~125000 events* 100 s = ~3500 hrs
- MCMC sampling requires random walk through 1000s of parameter sets

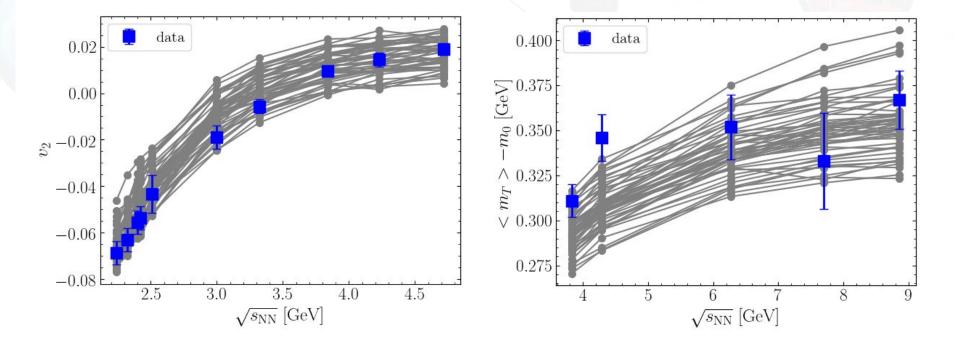
not feasible to run UrQMD for MCMC !

Training the GP models

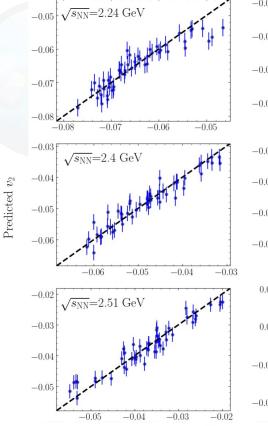
- Gaussian Process models are trained as fast emulators
 - trained on 200 randomly generated EoSs



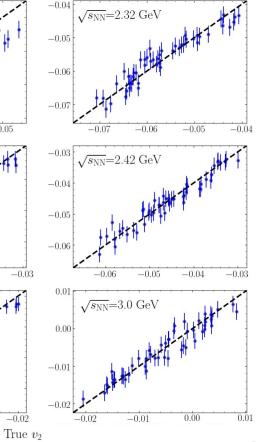
Potentials for training the GP models



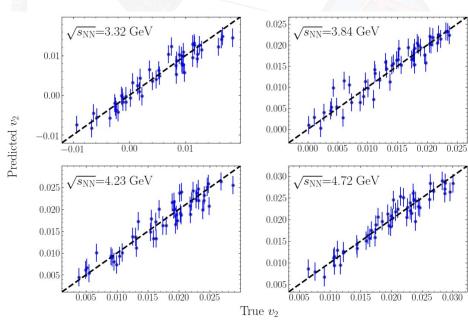
GP models: performance



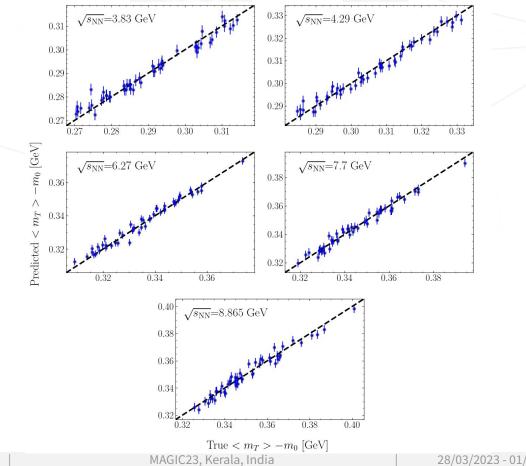
Manjunath Omana Kuttan



MAGIC23, Kerala, India



GP models: performance

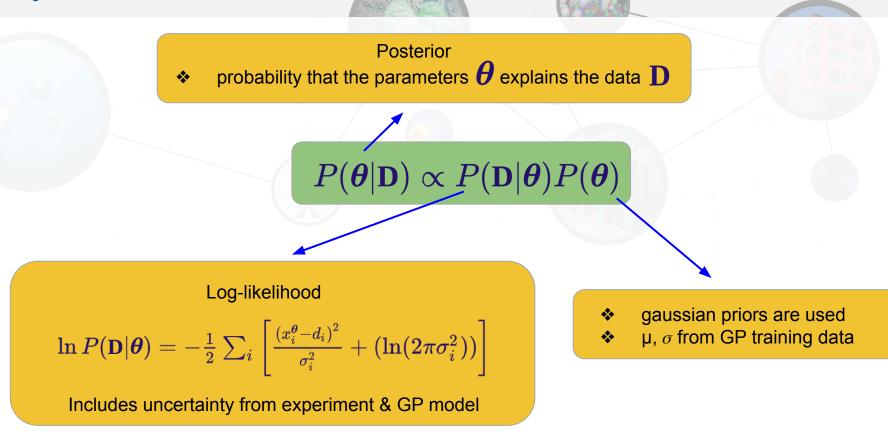


Manjunath Omana Kuttan

28/03/2023 - 01/04/2023

10

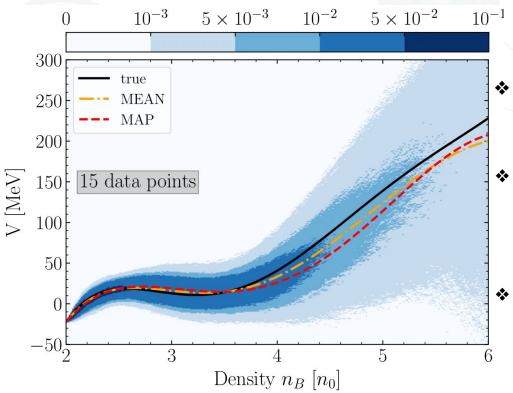
Bayesian inference



Closure test

- 1. Consider a random EoS as "ground-truth"
- 2. Calculate observables from UrQMD
 - a. 10 values of v_2 and 5 values of $\langle m_T \rangle m_0$
- 3. Assume the UrQMD observables for this EoS to be the "data"
 - a. assume uncertainty similar to experimental data
- 4. Construct the posterior
- 5. Compare with the "ground-truth"

Closure test: results

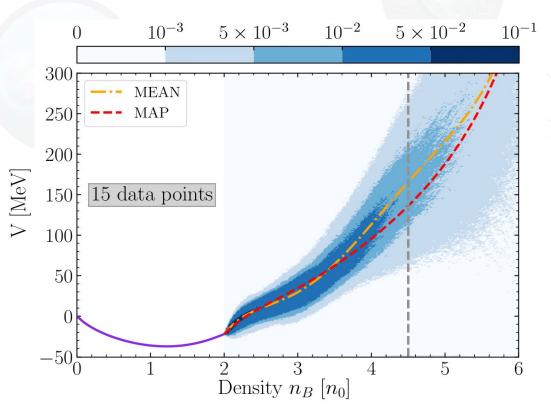


- Tight constraints up to 4n₀
 - > large uncertainty above $4n_0$
 - yet mean closely follows "ground-truth"

• Two curves extracted:

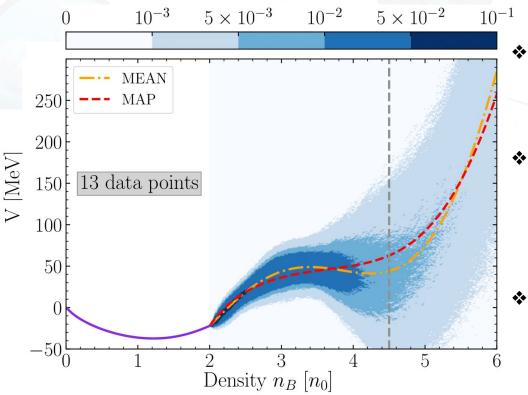
- "MAP": mode of posterior
- "MEAN": mean of posterior
- MEAN and MAP closely follows "ground-truth" upto 6n₀

Result from experimental data



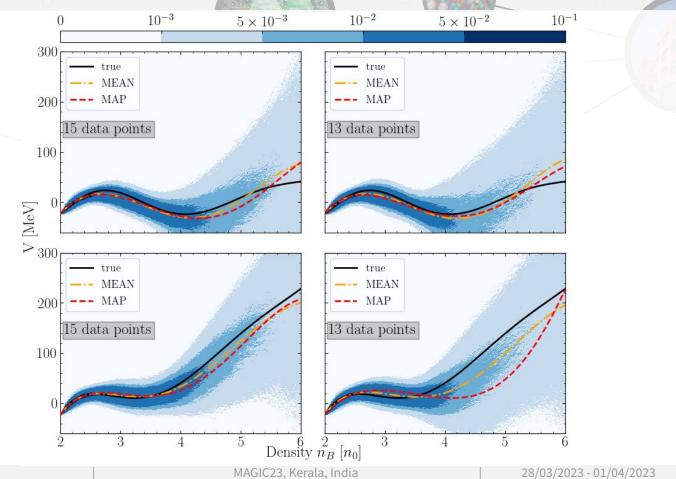
- Posterior from experimental data
 - > 10 measurements of v_2
 - > 5 measurements of $< m_T > -m_0$
- Tight constraints upto 4n₀
 - MEAN, MAP suggests stiff EoS
 - > No phase transition

Sensitivity to choice of observables



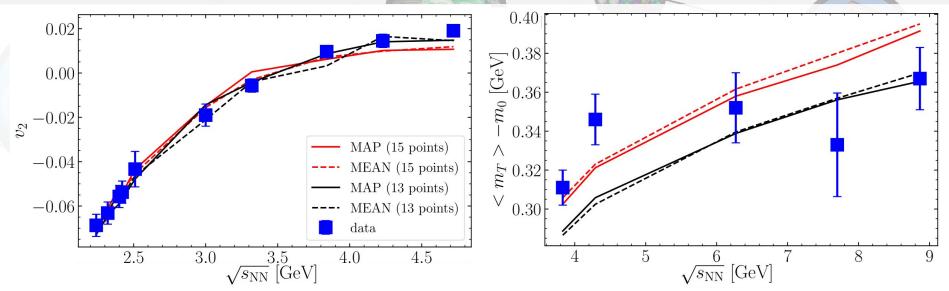
- Only 13 data points are used
 - <m_T>-m₀ at 3.83, 4.29 GeV not used
 - Significant differences in posterior
 - ➤ softening at 3- 5n₀
 - phase transition
- Beyond 3n₀ strong dependence to choice of observables

More closure test results



Manjunath Omana Kuttan

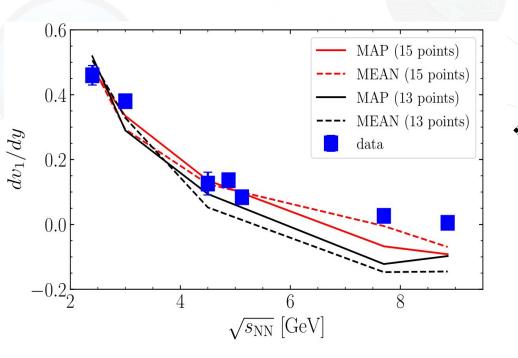
Reconstructed EoSs: v₂, <m₇>-m₀



• better v_2 predictions at high energies when 2 data points are removed

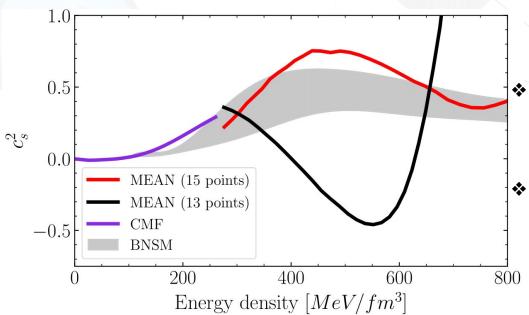
- > but also results in lower $< m_t > -m_0$
- large $< m_t > -m_0$ values for the stiff EoS (extracted using all data points)
- possible tension in data at ~4 GeV!
 - Measurement uncertainty? or limitation of the model?

Reconstructed EoSs: dv₁/dy



- dv₁/dy data was not used for inference
 - yet consistent with reconstructed EoSs
 - especially with all 15 data points

Reconstructed EoSs: c²



- 15 points, predicts a stiff EoS
 - consistent with astrophysical constraints arXiv:2203.14974 (2022)
 - broad peak structure
- 13 points, drastic drop in c_s²
 - ➤ first order phase transition

Summary

- Bayesian inference using polynomial parameterization of the density dependence of EoS
 - > v₂, <m_t>-m₀ of protons are used for inference
- inference using all 15 data points:
 - > constraints the EoS upto $4n_0$
 - > stiff EoS upto $4n_0$, no phase transition
 - consistent with BNSM constraint, dv₁/dy data
- strong dependence on choice of observables for $> 3n_0$
- tension in data at ~4 GeV
 - measurement uncertainty or model limitation?

For stricter, robust constraints on the EoS below $4n_0$, significant improvements and consistency in flow measurements are necessary for E_lab = 2-10 A GeV

	tps://arxiv.c	- 0	11 11670	
	uprxiv.C	orglabs122		
nt	tps://arxiv			

Backup slides

Microscopic transport with density dependent potential

- Non-equilibrium MD part of UrQMD is used
- UrQMD:
 - > Propagation of hadrons on classic trajectories
 - stochastic binary scattering , color string formation, resonance excitation and decays
 - Imaginary part of interactions:
 - geometric interpretation of cross section
 - Experiment, detailed balance
 - Hadronic cascade
 - effective EoS of HRG with respective dof
- Real part of interactions in UrQMD
 - QMD + density dependent potential
 - Unlike other mean field models, QMD is an n-body theory of interactions between n nucleons

Microscopic transport with density dependent potential

A density dependent potential enters QMD equations

 $\dot{\mathbf{r}}_i = rac{\partial \mathbf{H}}{\partial \mathbf{p}_i}, \quad \dot{\mathbf{p}}_i = -rac{\partial \mathbf{H}}{\partial \mathbf{r}_i}.$

The total hamiltonian function is sum over all hamiltonians of the i baryons

$$\mathbf{H} = \sum_i H_i, \;\; H_i = E_i^{kin} + V_i$$

This include KE and total potential energy V $\mathbf{V} = \sum_i V_i \equiv \sum_i Vig(n_B(r_i)ig)$

The change in momentum for baryon 'i' is then

The local interaction density $n_B at r_k$ is calc by assuming each particle as gaussian wave packet

$$egin{aligned} n_B(r_k) &= n_k = \sum_{j,j
eq k} n_{j,k} \ &= ig(rac{lpha}{\pi}ig)^{3/2} \sum_{j,j
eq k} B_j \exp\left(-lpha(\mathbf{r_k}-\mathbf{r_j})^2
ight) \ &lpha$$
=1/2L, L= 2 fm²

$$egin{aligned} \dot{\mathbf{p}}_i &= -rac{\partial \mathbf{H}}{\partial \mathbf{r}_i} = -rac{\partial \mathbf{V}}{\partial \mathbf{r}_i} \; \; n_{\{i,j\}} \equiv n_B(r_{\{i,j\}}) \ &= -\left(rac{\partial V_i}{\partial n_i} \cdot rac{\partial n_i}{\partial \mathbf{r}_i}
ight) - \left(\sum_{j
eq i} rac{\partial V_j}{\partial n_j} \cdot rac{\partial n_j}{\partial r_i}
ight) \end{aligned}$$

Force on ith baryon depends on change in potential energy at point r_i due to local gradient of $n_B(r_i)$ and change in potential at positions r_i of all baryons j due to change in r_i

-solved in timestep 0.2fm/c

Manjunath Omana Kuttan

28/03/2023 - 01/04/2023

$$egin{aligned} P(n_B) &= P_{ ext{id}}(n_B) + \int_0^{n_B} n' rac{\partial U(n')}{\partial n'} dn' \,, \, U(n_B) &= rac{\partial ig(n_B \cdot V(n_B)ig)}{\partial n_B} \ \mu_B'(n_B) &= \mu_B^{id}(n_B) + U(n_B) \ \epsilon(n_B) &= -P(n_B) + \mu_B' n_B + sT \end{aligned}$$