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Heavy Ion Collisions

Figure: Schematic sketch of relativistic heavy ion
collisions.[http://wl33.web.rice.edu/research.html]

I Relativistic hydrodynamic simulations have been extremely successful
in describing the space-time evolution of QGP formed in the early
stages of collisions.

I Relativistic viscous hydrodynamics exhibits considerable agreement
with the experimental data.

Lakshmi J. Naik MAGIC23, Kovalam March 29, 2023 3 / 26



Rel. dissipative hydrodynamics

I Energy-momentum tensor for a viscous fluid :

Tµν = εuµuν − P∆µν + πµν ,

uµ - fluid 4−velocity
∆µν ≡ gµν−uµuν - projection operator orthogonal to uµ

πµν - shear stress tensor

I We consider the conformal case, ε = 3P

I Evolution equations for ε and uµ :

uν∂µT
µν = 0 =⇒ ε̇+ (ε+ P)θ − πµνσµν = 0,

∆α
ν ∂µT

µν = 0 =⇒ (ε+P) u̇α −∇αP + ∆α
ν ∂µπ

µν = 0,

where, σµν ≡ 1
2 (∇µuν+∇νuµ)− 1

3θ∆µν , ∇µ ≡ ∆µα∂α
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Rel. dissipative hydro. (Contd.)

I Form of πµν need to be specified.

I Relativistic Navier-Stokes theory gives the simplest form of πµν :

πµν = 2ησµν ,

η - coefficient of shear viscosity

I Rel. Navier Stokes theory (first order in gradients) shows acausal
behaviour

I Causality can be restored by considering higher order gradient
corrections

I Minimal causal theory -simplest way to conserve causality :
Maxwell-Cattaneo law
[J. C. Maxwell (1867); C. Cattaneo (1948)]

τππ̇
〈µν〉 + πµν = 2ησµν

τπ - shear relaxation time-scale
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Dissipative hydro. from kinetic theory

I Hydrodynamic equations can be derived from kinetic theory

Tµν(x) =

∫
dppµpν f (x , p), πµν = ∆µν

αβ

∫
dppαpβδf ,

f = f0 + δf

I Rel. Boltzmann equation in the relaxation time approximation is
solved iteratively :

pµ∂µf = −(u · p)
f − feq
τR

I f = f0 + δf (1) + δf (2) + ...

δf (1) = − τR
u · p

pµ∂µf0 δf (2) =
τR
u · p

pµpν∂µ

(
τR
u · p

∂ν f0

)
...
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Second order hydrodynamics

I Substituting f = f0 + δf (1) + δf (2), [A. Jaiswal, PRC 87, 051901
(2013)]

π̇〈µν〉+
πµν

τπ
= 2βπσ

µν+ 2π〈µγ ω
ν〉γ− 10

7
π〈µγ σ

ν〉γ− 4

3
πµνθ.

DNMR theory : [G. S. Denicol, H. Niemi, E. Molnar, D. H. Rischke,
PRD 85, 114047 (2012)]

I Minimal causal theory : Muller Israel Stewart (MIS) theory

τππ̇
〈µν〉 + πµν = 2ησµν − 4

3
τππ

µνθ.

[I Muller, Z. Phys. 198, 329 (1967); W. Israel , J. M. Stewart, Annals
Phys. 118, 341 (1979)]
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Third order hydro. formalism
Third order hydro. is obtained by extending the Chapman-Enskog like
iterative solution to one higher order [A. Jaiswal, PRC 88, 021903 (2013)]

π̇〈µν〉 =− πµν

τπ
+ 2βπσ

µν + 2π〈µγ ω
ν〉γ − 10

7
π〈µγ σ

ν〉γ − 4

3
πµνθ

+
25

7βπ
πρ〈µων〉γπργ −

1

3βπ
π〈µγ π

ν〉γθ − 38

245βπ
πµνπργσργ

− 22

49βπ
πρ〈µπν〉γσργ −

24

35
∇〈µ

(
πν〉γ u̇γτπ

)
+

4

35
∇〈µ

(
τπ∇γπν〉γ

)
− 2

7
∇γ
(
τπ∇〈µπν〉γ

)
+

12

7
∇γ
(
τπu̇
〈µπν〉γ

)
− 1

7
∇γ
(
τπ∇γπ〈µν〉

)
+

6

7
∇γ
(
τπu̇

γπ〈µν〉
)
− 2

7
τπω

ρ〈µων〉γπργ

− 2

7
τππ

ρ〈µων〉γωργ −
10

63
τππ

µνθ2 +
26

21
τππ

〈µ
γ ω

ν〉γθ.
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Björken Flow

I Björken’s prescription assumes that the evolution of QGP is only
along the initial beam direction. (z-direction)
[J. D. Björken, PRD 27, 140-151 (1983)]

I Convenient to parameterize the coordinates in terms of proper time,
τ =
√
t2 − z2 and space-time rapidity, ηs = 1

2 ln t+z
t−z :

t = τ cosh ηs

z = τ sinh ηs .

I Under Björken expansion, hydrodynamic quantities (ε,P, πµν)
depends only on the proper time (τ).
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Longitudinal expansion of QGP
I Relativistic viscous hydrodynamic equations under 1D Björken

expansion are obtained as (generic form)

dε

dτ
= −1

τ

(
4

3
ε− π

)
,

dπ

dτ
= − π

τπ
+

1

τ

[
4

3
βπ −

(
λ+

4

3

)
π − χπ

2

βπ

]
,

βπ a λ χ γ

MIS 4P/5 4/15 0 0 4/3

DNMR 4P/5 4/15 10/21 0 4/3

Third-order 4P/5 4/15 10/21 72/245 412/147

Table: Coefficients appearing in Bjorken flow evolution equation of shear
stress tensor for the three theories considered in this work.

[S. Jaiswal et al., PRC 100, 034901 (2019)]
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Longitudinal expansion of QGP

I Relativistic viscous hydrodynamic equations under 1D Björken
expansion are obtained as

1

ετ4/3

d(ετ4/3)

dτ
=

4

3

π̄

τ
,

d π̄

dτ
= − π̄

τπ
+

1

τ

(
a− λπ̄ − γπ̄2

)
,

where βπ = 4P/5 and π̄ = π/(ε+ P).
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Longitudinal expansion of QGP

I The equations can be analytically solved for certain approximations of
τπ.

I For conformal system ε ∝ T 4 and from kinetic theory
T τπ = 5(η/s) =const.

I Three cases are considered with τπ ∝ 1/T , where T is either a const.
or has proper time evolution of ideal hydro. or Navier-Stokes
hydrodynamic solutions
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Approx. analytical solutions
ε and π̄ evolution are obtained in the generic form :

π̄(τ̄) =
(k+m+ 1

2 )Mk+1,m(w)− αWk+1,m(w)

γ|Λ| [Mk,m(w) + αWk,m(w)]
,

ε(τ̄) =ε0

(w0

w

)4
3

(
|Λ|− k

γ

)
e−

2
3γ

(w−w0)
(

Mk,m(w) + αWk,m(w)

Mk,m(w0) + αWk,m(w0)

) 4
3γ

,

where, τ̄ ≡ τ/τπ is the scaled proper-time variable, and Mk,m(w) and
Wk,m(w) are Whittaker functions.

T (τ) w Λ k m

const. τ̄ −1 −1
2 (λ+1) 1

2

√
4aγ+λ2

ideal 3
2 τ̄ −3

2 −1
4 (3λ+2) 3

4

√
4aγ+λ2

NS 3
2

(
τ̄+ a

2

)
−3

2 −1
4

[
3
(
λ− a

2

)
+2
]

3
4

√
4aγ+

(
λ− a

2

)2

[S. Jaiswal et al., PRC 100, 034901 (2019)]
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Hydrodynamic attractor

I Attractor : set of states toward which a system tend to evolve for a
variety of initial conditions

I The procedure for identifying the hydrodynamic attractor was to look
for the value α0 at which the following quantity diverges :

ψ(α0) ≡ lim
τ̄→0

∂π̄

∂α

∣∣∣∣
α=α0

This holds true for α = 0 =⇒ corresponds to attractor

I Equation for repulsor curve is obtained by considering τ̄ =∞ and
look for the value α0 at which ψ diverges =⇒ α =∞

Lakshmi J. Naik MAGIC23, Kovalam March 29, 2023 14 / 26



Hydrodynamic attractor

I Equations can be decoupled by introducing the variables :
π̄ = π/(ε+ P) and τ̄ = τ

τπ
:(

π̄ + 2

3

)
d π̄

d τ̄
= −π̄ +

1

τ̄

(
a− λ π̄ − γ π̄2

)
,

I Initial condition for attractor is obtained by imposing the boundary
condition π̄ and d π̄/d τ̄ remain finite as τ̄ → 0.

I Quadratic eqn. : γπ̄2 + λπ̄ − a = 0 for initial value of π̄

I Has two solutions : positive root is stable and corresponds to the
attractor initial condition and the negative root corresponds to
repulsor
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Hydrodynamic attractor

Figure: Attractor behaviour of approximate analytical solution for third order
theory.

[S. Jaiswal et al., PRC 100, 034901 (2019)]
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Hydrodynamic attractor
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Figure: Comparison of numerical and analytical attractors for different theories.
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Thermal particles

I We study the effect of hydrodynamic attractors of causal boost
invariant hydrodynamics on thermal particle production from heavy
ion collisions

I Thermal particles (dileptons & photons) emitted from QGP act as the
most prominent tools to provide information about the hot fireball.

I Viscosity of the QGP can be studied by analysing the thermal particle
emission. [J. R. Bhatt et al., Nucl.Phys.A 875 (2012) 181-196; J. R.
Bhatt et al., JHEP 11 (2010) 106]
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Thermal dilepton production

I From kinetic theory, the dilepton production rate for qq̄ annihilation
can be written as

dNl+l−

d4xd4p
= g2

∫
d3p1

(2π)3

d3p2

(2π)3
f (E1,T )f (E2,T )

×vrelσ(M2)δ4(p − p1 − p2).

I Effect of viscosity enters through distribution function, f = f0 + δf .

I Form of distribution function is derived from Chapman-Enskog
method

δf =
f0β

2βπ(u ·p)
pαpβπαβ,

where β = 1/T and βπ = (ε+ P)/5. [R. S. Bhalerao et al., PRC 89,
054903 (2014).]
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Thermal dilepton production
I

dNl+l−

d4xd4p
=

dN0
l+l−

d4xd4p
+

dNπ
l+l−

d4xd4p
,

with

dN0
l+l−

d4xd4p
=

1

2

M2g2σ
(
M2
)

(2π)5
e−u·p/T ,

dNπ
l+l−

d4xd4p
=

dN0
l+l−

d4xd4p

{
5β

2 [(u · p)2 −M2]5/2

×

[
(u · p)

√
(u · p)2 −M2

2

(
2(u · p)2 − 5M2

)
+

3

4
M4 ln

(
u · p +

√
(u · p)2 −M2

u · p −
√

(u · p)2 −M2

)]}
× pαpβπ̄αβ,

where π̄αβ = 5παβ/βπ.
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Photon production rate

I Total photon production rate including the Compton scattering and
qq̄ annihilation is

E
dNγ

d4xd3p
= E

dN0
γ

d4xd3p
+ E

dNπ
γ

d4xd3p

E
dN0

γ

d4xd3p
=

5

9

αeαs

2π2
T 2e−u·p/T

[
ln

(
12(u · p)

g2T

)
+

Cann + CComp

2

]
,

E
dNπ

γ

d4xd3p
= E

dN0
γ

d4xd3p

{
5β

2(u · p)

}
pαpβπ̄αβ,

where g =
√

4παs , Cann = −1.9163, CComp = −0.41613
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Thermal particle yield

Once we obtain the temperature profile of the medium, thermal dilepton
and photon yields can be computed by integrating the rates over
space-time history of the QGP expansion.

dNl+l−

dM2d2pTdy
= πR2

A

∫ τf
τ0

dτ τ
∫∞
−∞ dηs

(
1
2
dNl+l−
d4xd4p

)
,

dNγ
d2pTdy

= πR2
A

∫ τf
τ0

dτ τ
∫∞
−∞ dηs

(
E

dNγ

d3pd4x

)
.
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Thermal dilepton yield
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Figure: Ratio of viscous to ideal
dilepton spectra (τπ ∼ 1/Tid).

Rl+ l−=

(
dN

l+ l−
dM2d2pT dy

)/(
dNi

l+ l−
dM2d2pT dy

)

I Dilepton invariant mass,
M = 1 GeV

I The yield corresponding to
attractor gets the maximum
enhancement and the one
corresponding to repulsor
suffers maximum suppression.
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Thermal photon yield
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Figure: Ratio of viscous to ideal photon spectra (τπ ∼ 1/Tid).
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Summary

I We analyzed the analytical attractor solutions of relativistic viscous
hydrodynamics for 1D expansion.

I We studied the effect of hydrodynamic attractor of causal dissipative
hydrodynamics on thermal particle emission in the context of heavy
ion collisions

I Thermal particle production rates are calculated in the presence of
viscous modified distribution functions

I Thermal particle spectra is studied by using hydrodynamic attractors
for the evolution of the plasma

I The evolution corresponding to attractor solution leads to maximum
production of thermal particles.
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THANK YOU
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