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Lecture 1

• Neutrinos, their sources and detection
• Solar neutrinos
• Reactor neutrinos
• Accelerator neutrinos
• Operating long-baseline experiments
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Why is this picture wrong? 

Fruit fly

• Neutrinos are special: 

- their masses are much smaller 

than all other particle masses

- but they are not zero (as we 

believed for a long time)

• Their small masses make them 

truly quantum mechanical objects.

See talk by Marcela Carena
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• Neutrinos are special: 

- their masses are much smaller 

than all other particle masses

- but they are not zero (as we 

believed for a long time)

• Their small masses make them 

truly quantum mechanical objects.

• ..and this picture confuses flavour

and mass eigenstates.

Why is this picture wrong?

Fruit fly
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Neutrino Sources (nuclear processes)

• Nuclear processes are 
typically the source of 
electron-neutrinos.

• Energies ≈ 1-20 MeV

• Discovery of electron-
neutrino by Cowan and 
Reines at the Savannah 
River power plant in 1956.
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Neutrino Sources (charged hadron decays)

• Pion/kaon production and 
decay are main source of 
accelerator and 
atmospheric neutrinos

• Typical energies ≈ GeV, 
ratio of 𝜈𝜇:𝜈e = 2:1.

• Discovery of muon-
neutrino by Ledermann, 
Schwartz, Steinberger at 
Brookhaven in 1962.
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Neutrino sources, flux, and cross sections

C. Spiering, arXiv:1207.4952 J. Formaggio, G.P. Zeller, arXiv:1305.7513

C. Spiering, arXiv:1207.4952
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Detecting solar neutrinos

Ray Davis experiment, Homestake Mine, South Dakota

Filled with 390,000 litres of cleaning fluid (C2Cl4)

“Inverse 𝛽 Decay”

~1/3

E𝜈 > 0.8 MeV
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• Filter out argon and search for 
37Ar decay

• Detecting ~5 atoms of 37Ar per 

day in 390,000 litres of C2Cl4

Homestake experiment (1970-1994)
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SNO Detector

• Davis experiment only showed that 
some of the electron-neutrinos went 
missing.

• Needed a detector that can measure 
different neutrino flavours to confirm 
the 3-flavour oscillation model.

• SNO detector – filled with heavy water 
- is sensitive to Cherenkov light from 
scattered electrons and from photons 
produced when neutrons are 
captured.

43o

Cherenkov cone

e -
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Neutrino interactions in SNO

νe e-

W

n p

Charged Current interaction:
Sensitive only to νe

νx
νx

Z

e- e-

νe e-

W

e- νe

Elastic Scattering:
Sensitive to charged and neutral current.
νe dominate by a factor of 6

Sensitive to 
neutrino direction
(we know 
location of the 
Sun)

Not sensitive to neutrino direction
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SNO demonstrates flavour change

What SNO told us
Individual phases

• Measurement of 8B flux without

Solar model constraints.

– Confirm SSM.

• Neutrino flavour change.

– Non-electron Solar neutrinos

observed.

– Solve the Solar Neutrino

Problem

• Measurement of ✓12 independent

of SSM possible.
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NOW, 2012 Final results from SNO slide 6 of 21

SNO measured three 
different fluxes –
effectively just solve a set 
of linear equations.

muon-tau-type flux

Electron-type flux
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PMNS Matrix

Pontecorvo–Maki–Nakagawa–Sakata

• θ12: “solar mixing angle” 

• mixes 𝜈e with 𝜈1 and 𝜈2

• θ23: “atmospheric mixing angle” 

• mixes 𝜈𝜇 with 𝜈𝜏

θ13: mixes 𝜈e with 𝜈3  

δ:  complex phase

MassFlavour
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PMNS Matrix

• Θ12 and θ23 are large (“maximal” mixing)

• Angle θ13  is small and mixes 𝜈e with 𝜈3  

• CPV term (δ) ∝ θ13 

• Look for 𝜈e mixing driven by Δm2
32

solar atmospheric“reactor”



CP Violation involving neutrinos might provide support for Leptogenesis
as mechanism to generate the Universe’s matter-antimatter asymmetry.

Caveat: 
No direct evidence for Leptogenesis, since a model is needed to connect the low-scale 
CPV observed here to high-scale CPV for heavy neutrinos that lead to Leptogenesis.

The PMNS Matrix and CP violation

complex CP phase

INFIERI Sao Paulo15
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The CKM matrix is almost diagonal, while the PMNS matrix is almost uniform.

INFIERI Sao Paulo
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Neutrino flavour oscillations

Rate driven by mass splitting Δm2

Amplitude driven by 
mixing angle sin2(2θ)

INFIERI Sao Paulo
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Bruno Pontecorvo

• Concept of flavour not known at the time
• Pontecorvo hypothesized that neutrinos 

oscillated between particle and anti-
particle states.
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Baseline, energy, and frequency

CERN Courier, 2020
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Daya Bay reactor
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“Reactor” Oscillations

Juno     KamLAND

J. Ling, Neutrino 2020

Daya Bay:
Near                         Far

“Survival probability” for anti-𝜈e  from the reactor (E ≈ 3 MeV)

- Optimize baseline
- No matter effect (short 

baseline)
- Need near and far 

detector



22

Daya Bay Layout

Inverse 𝛽 decay (IBD)

Scintillator, loaded
with gadolinium
(high neutron capture
cross section)
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RENO detector

Far Detector

Near 

Detector

16.5 t of gadolinium-doped liquid scintillator

https://en.wikipedia.org/wiki/Tonne
https://en.wikipedia.org/wiki/Gadolinium
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Original θ13 measurements (Far/Near)

M.He, NNN
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JUNO (under construction)

See talk by 
Albert de 
Roeck
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JUNO

• Acrylic panels

• 20012 20’’ PMTs + 25600 3’’ PMTs

• Liquid scintillator

Need excellent resolution to 
measure mass ordering
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JUNO
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PMNS Matrix

• “Small” angle θ13  mixes 𝜈e with 𝜈3  

• Look for 𝜈e mixing driven by Δm2
32

• Reactor: anti-𝜈e  disappearance

• Accelerator: 𝜈e appearance  in 𝜈𝜇 beam 

→ sensitive to θ13  and 𝛿 (and MO).

solar atmosphericreactor
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Baseline, energy, and frequency

CERN Courier, 2020
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Making a neutrino beam

Making a neutrino beam 

4 

π- 

π+ 

Target Focusing Horns 

2 m 

675 m 

νµ 

νµ 

15 m 30 m 

120 GeV/ c 

p’s from MI 

Neutrino mode 

Horns focus p+, K+ 

nµ  91.7%  

nµ    7.0% 

ne + ne    1.3% 

E
v
e

n
ts

 

K. Lang, U. of Texas at Austin, MINOS , Neutrino Telescopes, Venice March 12, 2013 

• As neutrinos are neutral, they cannot be focused, and a 
magnetic horn is thus used to focus the pions.

• Invented by Simon van der Meer at CERN.



How to make a neutrino beam

INFIERI Sao Paulo32

• T2K 1.3 MW prototype target production

• All graphite and titanium parts ready for final assembly and welding.

• Targets require cooling.
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Fermilab NuMI beam
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Making a neutrino beam

Pion decay at rest:

Boost into lab system:
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Forward/Reverse Horn Current
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Interlude: where are the tau neutrinos?

Baseline/Neutrino energy
E = 2 GeV, L=1000 km

Blue – muon neutrino
Red  - tau neutrino
Black – electron neutrino
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CNGS 𝜈𝜇 beam from CERN to Gran Sasso

L/E ≈ 732 km/17 GeV = 43 

Need high-energy beam to make tau-leptons!
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First observation of 𝜈𝜏 →𝜈𝜏 appearance

25th May 2011 Justin Evans

Opera’s first tau neutrino

15

γ1

γ2

CNGS 
Beam

Consistent with  

ντ   →  τ - → π-
 + π0 

Over 2σ significance 
for ντ identification

Tuesday, 14 June 2011

6σ significance
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Long-baseline: finding the oscillation maximum

Typical neutrino beam 
energy is around 2.5 GeV

Baseline/Neutrino energy

L/E ∼ 1700 km/GeV
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Optimizing L/E for neutrino oscillations

L ≈ 300 km

L = 1300 km

• L/E = 300 km/0.6 GeV = 500 km/GeV
• no matter effects; first oscillation maximum.
• use narrow width neutrino beam (off axis) with E < 1 GeV

• L/E = 1300 km/2.5 GeV = 500 km/GeV (1st max), 
• L/E = 1300 km/0.8 GeV = 1700 km/GeV (2nd max)
• matter effects; first and second oscillation maximum.
• use broad-band neutrino beam (on axis).

e.g. Water Cherenkov (T2K,HK)

e.g. Liquid argon (DUNE)
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Off-axis vs on-axis beams

T2K at 2.5 degrees DUNE on-axis beam
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Interlude: neutrino-nucleon interaction

νl
νl

Z

n n

Elastic scattering

νl l-

W

n p

Quasi-elastic scattering
(lowest energies)

Resonance
(Energies ~1 GeV)

νl l-

W

p p
Δ++

π+

νl l-

W
Hadrons

Deep inelastic scattering
Highest energies (>1 GeV)

p

‘Low-energy’ neutrino 
beams – we need to 
understand the 
interaction of 
neutrinos and related 
nuclear effects.
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MINERvA νμ quasi-elastic interaction

νμ μ-

W

n p

Quasielastic scattering

Proton

Muon

Minerva: uses active tracker 
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MINERvA νμ quasi-elastic interaction

Quasielastic scattering

νμ μ+

W

p n

Neutron

Antimuon
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MINERνA deep inelastic scattering event

νμ μ-

W
Hadrons

Deep inelastic scattering

p
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Another Complication

Need to understand nuclear effects – which are messy!

Some effects can be mitigated by use of same nuclear targets for 
near and far detector.
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Operating Long-baseline experiments

NOvA baseline:
810 km

T2K baseline:
295 km
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T2K Experiment P. Dunne, 
Neutrino 2020
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• 50,000 tons of water surrounded by 

11,000 PMTs (20 inch).

• 1 km rock overburden

• 39.3m in diameter and 41.4m in 

height

Super-Kamiokande

43o

Cherenkov
cone

e -
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Cherenkov Radiation

cosJ c =
ct

n

vt
=

ct
n

bct
=

1

nb

The critical wave front is emitted at an angle
 c = cos-1(1/n)

• A cone of light radiates out from each point on the particle's track. 
• The Cherenkov cone angle is related to the particle’s 

• Total number of photons N depends on  c and therefore on velocity 
• Measurements of  c and N gives  and hence, with momentum, identification 

g >
1

1- n-2
Threshold:
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Super-Kamiokande – electron or muon ring?
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Super-Kamiokande – electron or muon ring?
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Super-Kamiokande – electron or muon ring?
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The T2K Near Detector (ND280)

Different technology/target for near and far detector
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• NuMI beam: νμ or ν̅μ
• 2 functionally identical, 

tracking calorimeter detectors

– Near: 300 T underground

– Far: 14 kT on the surface

– Placed off-axis to produce a 
narrow-band spectrum

• 810 km baseline

– Longest baseline of current 
experiments.

NOvA Experiment
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• NuMI beam: νμ or ν̅μ
• 2 functionally identical, 

tracking calorimeter detectors

– Near: 300 T underground

– Far: 14 kT on the surface

– Placed off-axis to produce a 
narrow-band spectrum

• 810 km baseline

– Longest baseline of current 
experiments.

NOvA Experiment
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NOvA is on the surface..

• 14 kt Far Detector

• Equivalent Near Detector
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NOvA Detector

muon

Hadronic recoil

West

East

Up

Down

Beam direction

NOvA uses Convolutional Neural 
Networks (CVNs) to reconstruct 
images.
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Extracting the Information

J. Wolcott

Simultaneous fits of

• Data samples in Near and Far Detector

• Electron neutrino appearance and muon 
neutrino disappearance

• Flux model, incl. beam monitor and 
hadron production (NA61-SHINE)

• Cross section models

• Detector models for Near and Far Detector

• Error correlation matrix

• Oscillations Parameters
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νμ and νμ̅ disappearance at the NOvA Far Detector

νμ

211 events, 8.2 background 105 events, 2.1 background

ν̅μ

Alex Himmel,
Neutrino 2020
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Oscillation Samples in T2K Far Detector (SK)

INFIERI Sao Paulo

Electron Muon



• Hints for CP violation at 2-3 sigma but 

results results do not uniquely point 

towards a well-defined value

• Weak preference for Normal Ordering 

but current data are inconclusive.

• Need next-generation experiments to 

discover CPV and resolve mass 

ordering.

NOvA and T2K

INFIERI Sao Paulo64
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Lecture 2

• Future long-baseline experiments
• Liquid-argon detectors
• DUNE and Hyper-Kamiokande
• Sterile neutrinos at short-baselines
• Supernova neutrinos
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Optimizing L/E for neutrino oscillations

L ≈ 300 km

L = 1300 km

• L/E = 300 km /0.6 GeV = 500 km/GeV
• no matter effects; first oscillation maximum.
• use narrow width neutrino beam (off axis) with E < 1 GeV
• benefit from large mass

• L/E = 1300 km/2.5 GeV = 500 km/GeV (1st max), 
• L/E = 1300 km/0.8 GeV = 1700 km/GeV (2nd max)
• matter effects; first and second oscillation maximum.
• use broad-band neutrino beam (on axis).
• need good energy reconstruction

Water Cherenkov (HK)

Liquid argon (DUNE)
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DUNE in a Nutshell

FD

ND

1. A high-power, wide-band neutrino beam (~ GeV energy range).

2. A ≈ 70 kt liquid-argon Far Detector in South Dakota, located 

1478 m underground in a former gold mine.

3. A Near Detector located approximately 575 m from the neutrino 

source at Fermilab close to Chicago.

May 2018

INFIERI Sao Paulo69
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DUNE – a global collaboration

1317 collaborators from
208 institutions in 33 countries (plus CERN)
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Proton Improvement Plan (PIP-II)

• Goal: Deliver world-leading beam power to the 

DUNE/LBNF neutrino programme while providing a 

flexible platform for the future

– 1.2 MW to LBNF over 60-120 GeV; 

– upgradable to 2.4 MW

• Scope

– 800-MeV SC Linac

– Modifications to Booster, Recycler, Main Injector

• Broad international effort
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Proton Improvement Plan (PIP-II)
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Proton Improvement Plan (PIP-II)
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L/E = 500 km/GeV ⇒ L = 1300 km



DUNE Caverns

75 INFIERI Sao Paulo



DUNE Cavern at South Dakota – 75% excavated

INFIERI Sao Paulo76
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Sanford Underground Research Facility (SURF)
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The Homestake Mine in 1889
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• Experimental facilities at 
1478 m (about 1 mile)

• Two vertical access shafts

Davis Campus:
• LUX
• Majorana
• …
• LZ

new excavation for DUNE
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Four cryostats filled with liquid argon

External Dimensions: 19 m x 18 m x 66 m               

Each of the four cryostats contains 17,000 tons of liquid argon at 89 K (-184°C or -299°F)
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muon-

neutrino

muon
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electron-

neutrino

electron
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Some history

• “Briefly, the idea consists of drifting 
the whole electron image of an 
event occurring in the noble liquid 
towards a collecting multi-electrode 
array which is capable of 
reconstructing the three-dimensional 
image (x,y,z) of the event from the 
(x,y) information and the drift time 
(t)".

• "the purity of the Argon is the main 
technological problem. … electron 
lifetimes corresponding to residual 
oxygen impurity content of about 4 x 
10-2 ppm" are reachable. However, 
this limits "the electron mean free 
path to about 30 cm. Clearly, 
oxygen-free argon is the central 
problem for the LAr TPC".
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ICARUS (2010-2013)
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3.4 m → about 2 ms

170 kV



3.4 m → 2.13 ms

170 kV
(=500 V/cm)

88

Wire pitch ≈ 5 mm 

INFIERI Sao Paulo
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A liquid-argon “Bubble Chamber”

• Few mm resolution.

• Excellent energy 

measurement.

• Excellent e-γ separation.

• Particle identification 

through dE/dx, range,..

• Timing through 

scintillation light

This is an 
image….
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muon

proton

pion

Hydrogen Bubble chamber, Argonne, 1970

(muon)-neutrino

This is a photograph….
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Interlude: Fermilab Short-baseline programme

Detector

Distance from 

Target

Instrumented 

LAr Mass

SBND 110 m 112 ton

MicroBooNE 470 m 87 ton

ICARUS 600 m 476 ton

MiniBooNE
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75 cm
Run 3493 Event 41075, October 23

rd
, 2015 

The invisible neutrino is 

coming in here
Cosmic background

Cosmic background

Cosmic background
Two showers with visible offset from 

origin: might be 𝝅0 -> γ + γD
ri
ft

 e
le

c
tr

o
n
 a

rr
iv

a
l 
ti
m

e

Color: number of 

deposited drift 

electrons

Wire number
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Need state-of-the-art algorithms (e.g., CVNs etc) to reconstruct these events
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Horizontal Drift Detector (FD Module 1)

ANODE CATHODE ANODE CATHODE ANODE



Module 1: Horizontal Drift

• 150 Anode Plane Assemblies (APA)

• 130 in UK and 20 in US

INFIERI Sao Paulo96

ProtoDUNE at CERN
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Vertical Drift Detector (FD Module 2)

Perforated Anode
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Photon Detection (Arapuca Light Trap Concept)

• Fast (7 ns) and slower (≈1500 ns) 

components, corresponding to single 

and triplet states of excited molecule

• Argon scintillation light is very 

abundant (40k photons/MeV)

• Need wavelength shifter to shift VUV 

to visible

• Readout with PMTs, SiPMs….

• Provides timing and event 

reconstruction (light is fast, charge is 

slow!)

• Complementary to charge readout

128 nm
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Photon Detection

Arapuca ‘traps’ 
light with 
dichroic filters.
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CERN Neutrino Platform
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ProtoDUNE-Single Phase (HD)

Need to correct 
for space charge 
effects!
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Calorimetry with Liquid-argon

“Bethe Bloch”

1 GeV proton
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Calorimetry with Liquid-argon

1 GeV electron



A ProtoDUNE-HD Data Event

107 INFIERI Sao Paulo

Reconstruction of events performed by PANDORA framework 

with the use of Grid computing resources, both areas UK-led.
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Beam Monitor (SAND) Gas-argon TPC Pixel LArTPC

• Near Detectors constrain systematic uncertainties for long-baseline oscillation analysis

Neutrino flux & cross-section, and detector systematics

• In addition, >100 million interactions will also enable a rich non-oscillation physics programme (e.g. BSM).
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The PRISM Concept

L. Pickering

𝛎

𝛎 𝛎

𝛎

𝛎

Linear superposition of spectra allows to construct oscillated flux distribution.

Remember beam kinematics!
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• PMT frame moving inside 10 m wide and 50 m high cylinder with water

• ICWD located at ~1-2 km, scanning the beam  from 1˚ to 4˚ off-axis angle



HyperKamiokande in a Nutshell

INFIERI Sao Paulo112

• 8.4 times larger fiducial mass (190 kiloton) than SK with double-sensitivity PMTs

• New (IWCD) and upgraded (@280m) Near Detectors to control systematic uncertainties.

• J-PARC neutrino beam to be upgraded from 0.5 to 1.3 MW



HyperKamiokande

113

)

50 cm PMTs

Electronics

Outer Detector

mPMT

INFIERI Sao Paulo
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Hyper-Kamiokande

43o

Cherenkov
cone

e -
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• An upgraded version of the current ND280 

detector.

• Addition of a 1kt Cherenkov water detector at a 

baseline of 1 km with vertical movement – PRISM 

concept

An upgraded Near Detector
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An international project
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Hyper-Kamiokande to Korea? 



INFIERI Sao Paulo

𝜈 Flux                            𝜈-Ar Interactions               Far Detector                     Oscillations

Near Detector

ND and FD Spectra

Statistical Test
Systematics

Final Sensitivity

118
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νe appearance gives access to δ

P (⌫µ ! ⌫e) ⇡ sin2 ✓23 sin2 2✓13

sin2(∆ 31 − aL )

(∆ 31 − aL )2
∆ 2

31

+ sin 2✓23 sin 2✓13 sin 2✓12
sin(∆ 31 − aL )

(∆ 31 − aL )
∆ 31

sin(aL )

aL
∆ 21 cos(∆ 31− δ)

+ cos2 ✓23 sin2 2✓12
sin(aL )

aL
∆ 2

21

a =
GF Ne

p
2

∆ i j =
∆ m2

i j L

4E

•  e appearance amplitude 
depends simultaneously on 
 13,  23, CP, and matter 
effects –

• Measurements of all four 
possible in a single 
experiment.
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effects –

• Measurements of all four 
possible in a single 
experiment.
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νe appearance gives access to δ

a =
GF Ne

p
2

∆ i j =
∆ m2

i j L

4E

•  e appearance amplitude 
depends simultaneously on 
 13,  23, CP, and matter 
effects –

• Measurements of all four 
possible in a single 
experiment.

• Need to resolve degeneracies 
(e.g., MO vs. CP).
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Electron neutrino appearance

Varying 𝛿 Varying mass ordering and sin2𝜃23

Excellent energy reconstruction needed!
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DUNE Mass ordering and CPV phase

CPV sensitivity Mass ordering sensitivity

INFIERI Sao Paulo



HK: Sensitivity to CP Violation

INFIERI Sao Paulo125

• Due to short baseline 
HK cannot resolve 
Mass Ordering/CP 
degeneracy.

• If Mass Ordering 
remains unknown, 
beam analysis less 
sensitive for some 
values of δ.

• Joint atmospheric and 
beam analysis 
increases sensitivity.

• If CPV maximal, HK 
can be fast.



DUNE: Timeline for sensitivity to CP Violation

INFIERI Sao Paulo126

If CP violation is maximal, we can 
establish it at 3 sigma in 4 years 
and at 5 sigma in 8 years.

Other values of the CPV phase will 
be more challenging – combining 
with Hyper-K might be beneficial.

Advantage of DUNE over Hyper-K
• broader CPV coverage
• minimal dependence on 

external inputs 



HK: Sensitivity to CP Violation

INFIERI Sao Paulo127

• Difficult to compare 
because of different 
assumptions about staging 
and startup

• Both experiments need to 
ramp up quickly – expected 
to start data taking at the 
end of the decade



The DUNE Science Programme

INFIERI Sao Paulo128

Discovery of yet unknown parameters of

the lepton Yukawa sector:

• Determination of the mass ordering

• Discovery of CP violation

Measurements of PMNS parameters:

• 23 and its octant

• Dm2
13

• Precision measurement of CP

phase delta

Observation of atmospheric, solar and

SNB neutrinos:

• First observation of HEP neutrinos

from the sun

• Galactic SN explosion

• Best measurement of 12

Physics beyond the standard model

• Sterile neutrinos at LBNF

• Dark matter candidates at the near

detector

• Proton decay

• Boosted dark matter at far detector

Phase I: 20 kton, 1.2 MW beam

Phase II: 40 kton, 1.2 MW beam

Phase II: 40 kton, 2.4 MW beam
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Supernova 1987A
in the Large Magellanic Cloud (55 kpc away)

For comparison: the Milky Way is about 34 kpc across

SN1987A, about 24 neutrinos
observed, 3 hours before photons.
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Supernova neutrinos in DUNE

CC, 20 MeVNC, 10 MeV

Reconstruction through charge and light.
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Supernova signal in DUNE

• Neutrinos arrive before the light and can 
trigger observation by optical telescopes.

• Potentially a signal of 1000s of neutrinos in 
DUNE.

• Signal will teach us both about neutrinos 
and about the supernova mechanism.
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HK/DUNE Complementarity

Kate Scholberg
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• I have only been able to cover a small amount of the rich neutrino 
physics programme at accelerators.

• These next-generation experiments will test the three-flavour
paradigm, provide precision measurements of the neutrino sector, 
search for non-standard physics (sterile neutrinos, dark matter…), 
and much more. 

• This is complemented by an exciting non-accelerator physics 
programme, studying solar, atmospheric, and supernova neutrinos.

• Please contact me (stefan.soldner-rembold@cern.ch) if you have 
any questions.

Mega-scale neutrino detectors: science and technology

mailto:stefan.soldner-rembold@cern.ch

