
Alfredo Goldman (gold@ime.usp.br)

HPC and hardware heterogeneity,
how to navigate in this environment?

Prof. Dr. Alfredo Goldman

Ciência da Computação
Instituto de Matemática e Estatística

Universidade de São Paulo

September 2023

Alfredo Goldman (gold@ime.usp.br)

Agenda

About myself

The importance of Computer Science

Motivation for using HPC

Current state (yes, it is with heterogeneous hardware)

Alfredo Goldman (gold@ime.usp.br)

About be

Assistant professor at IME - USP 1993

MSc (1994) and Ph.D (1999) in Computer Science

Board of governors in the Brazilian Computer Society

Organizer and co-PC chair of many tracks/conferences

co-Workshop chair of SC 23

Alfredo Goldman (gold@ime.usp.br)

The importance of Computer Science
Paper from NYT in 2001

Alfredo Goldman (gold@ime.usp.br)

Facts about the ever growing influence of CS
Changes in scale

Around 80's a computer for many people
Today, many computers by person

Changes in computing power
A smartwatch has more computing power

than the Apollo 11 Computer
But you should read “Your Smart Toaster

Can’t Hold a Candle to the Apollo Computer”

The virtual economy is a reality
Marketplaces
Online transactions
Virtual currencies

Alfredo Goldman (gold@ime.usp.br)

Another interesting fact
Performance does not come for free as up to 2005

Alfredo Goldman (gold@ime.usp.br)

For some applications it worked fine
Deep Learning Example

GPUs performance

Tensor operations

Small theoretical advances

Great advances on NLP (chatGPT)

Alfredo Goldman (gold@ime.usp.br)

Not so good for some research areas
Paper of Nature

AI is changing the reality for some areas

Areas with the need for pattern recognition
that have great amounts of data are killer
applications!!!

Alfredo Goldman (gold@ime.usp.br)

Start of the bad news
The Internet was supposed to be a free territory

About 10 years ago, the beginning of the bad news

There was only one non commercial page among the top 10 on the web

Now, it is even worse, the regular user stays connected only to social networks
Not transparent
Addicting
Have bad characteristics

Killer example: The Terraplanists

Alfredo Goldman (gold@ime.usp.br)

After the good news let's see the other side (½)
The advances of hardware does not imply in advances for software

Large problems on many systems

Bugs all over the world
No industry accept the software failure rates
This is know as software crisis (term coined in 1967!)
Many advances in software, but there is no “silver bullet”

Python and JavaScript are the top programming languages

Alfredo Goldman (gold@ime.usp.br)

After the good news let's see the other side (2/2)

MPI is still the de facto standard for distributed programming

OpenMP appeared to ease the programing task
But, it has still some difficulties
“OpenMP is Not as Easy as It Appears” paper from 2016 :)

So, the machines evolved, but the way to use them not so much

Counterexamples:
Virtualization -> Cloud
Agile Methods

Alfredo Goldman (gold@ime.usp.br)

Before continuing
A question for the audience:

Who depends on software for the research?

How many years of experience of software do you have?

Alfredo Goldman (gold@ime.usp.br)

Bachelor’s in Computer Science –
Curriculum

● Duration: 4 years
● 23 compulsory courses

○ of these, 5 in mathematics and 1 in statistics
● 21 elective courses

○ of these, 1 for science and 1 for statistics
○ of these, 6 from any USP unit

● 240 hours of complementary academic activities (undergraduate
teaching assistant, research projects, seminars, etc.)

● In terms of hours:
○ 2565 class hours; 720 work hours; 240 hours of complementary academic activities

● Total of 3525 hours of dedication
●

Alfredo Goldman (gold@ime.usp.br)

How to improve?
Large efforts is software engineering

Automated tests are a most
Modern languages to help the parallel developper

(Rust, GO, Julia, etc)
Everything in the cloud
Microservices
HPC as a service

Large efforts to have strong curricula in CS courses
Concepts are essential

Efforts to show the importance of
Research Software Engineering

See the talk from Daniel Katz at IME - USP

Alfredo Goldman (gold@ime.usp.br)

Examples of possible improvements - 1
Parallelization of GCC one of the best well known compilers!

Compiling Files in Parallel: A Study with GCC

Alfredo Goldman (gold@ime.usp.br)

Examples of possible improvements - 2
Parallelization of GIT, both grep and checkout

Supported by AWS

Very important for projects as Chromium

Parallelizing Git Checkout: a Case Study of
I/O Parallelism
Running code on GIT :)

Alfredo Goldman (gold@ime.usp.br)

Current state of
heterogeneous HW

GPUs are already mainstream

GPUs are perfect for some applications

CUDA programming was a hype on the previous years

Now, there are many libraries with most common algorithms

There is a Lab on GPU programming running

Alfredo Goldman (gold@ime.usp.br)

There are other accelerators
TPU - Tensor Processing Units

In memory processing

Persistent Memory

Other type of accelerators (FFT, ASICs)

An example of good use of accelerators
The Chip M1 from Apple

Alfredo Goldman (gold@ime.usp.br)

And now?
How to find a tradeoff between the hardware performance and the
flexibility of software?

Creating new ways to do HW with SW :)

FPGAs!

Alfredo Goldman (gold@ime.usp.br)

What is an FPGA?
Basic Logic Circuits

Ports
Memory
Auxiliary Processor

This basic circuits can be connected to reproduce HW

Can be programmed using VHDL/Verilog
(HW description languages)

Or using High Level Synthesis, from languages to circuits

Alfredo Goldman (gold@ime.usp.br)

Verilog

//NAND gate using data flow modeling
module nand_gate_d(a,b,y);
input a,b;
output y;

assign y = ~(a & b);

endmodule

Alfredo Goldman (gold@ime.usp.br)

The two sides

Advantages

● Fast deploy
○ If the circuit is ready

● Big players (Xilinx & Altera)
○ (AMD & Intel)

● Available on the cloud

Disadvantages

● Slow Clock (hundreds of MHz)
● Learning Courbe

○ HW ou SW?
● Lack of standardization
● Lack of “circuits”

Alfredo Goldman (gold@ime.usp.br)

Research opportunities
To implement algorithms of part of them in FPGAs

A CPU-FPGA heterogeneous approach for biological sequence comparison
using high-level synthesis (Jorge et al.)

To change processors behavior
Enabling HW-based Task Scheduling in Large Multicore Architectures

(Moras et al.)

Which circuits have to be on the FPGA?

Are we going to have processors with integrated FPGAs?

Alfredo Goldman (gold@ime.usp.br)

Where is the place of FPGAs (1/2)

Alfredo Goldman (gold@ime.usp.br)

Accelerators and FPGAs (2/2)?

Taken from Hardware
Architectures for
Real-Time Medical
Imaging, Alcaín et al.
2021

Alfredo Goldman (gold@ime.usp.br)

OpenMP Cluster (OMPC)
Cluster Programming with OpenMP only

University of Campinas (Unicamp)
Institute of Computing (IC)
Computing Systems Laboratory (LSC)

Alfredo Goldman (gold@ime.usp.br)

Overview ● Introduction

● Programming model

● Execution flow

● FPGA Integration

Alfredo Goldman (gold@ime.usp.br)

Introduction

Alfredo Goldman (gold@ime.usp.br)

The Project

Alfredo Goldman (gold@ime.usp.br)

OMPC: Cluster Programming Made Easy
● Cluster programming with OpenMP

○ Mixing classic and target OpenMP directives
● Extends the LLVM OpenMP runtime for distributed architectures

○ Automatic task mapping and scheduling
○ Uses MPI for interprocess communication

● Offers fault tolerance mechanisms

OMPC users
can program MPI processes

without writing any MPI code

Alfredo Goldman (gold@ime.usp.br)

Where can I find details?

LLPP 2022 @ ICPP 2022

Alfredo Goldman (gold@ime.usp.br)

Programming Model

Alfredo Goldman (gold@ime.usp.br)

OMPC Task

● A target task is an independent piece of work to program
accelerators
○ They are standard OpenMP directives
○ The concept was expanded by OMPC to program clusters

#pragma omp target nowait

printf(“Hello World\n”)

Alfredo Goldman (gold@ime.usp.br)

OMPC Data Management

● Data mapping for multiple target tasks

● Data dependencies must be specified in the target tasks

● Allows direct communication between workers

#pragma omp target enter data map(to: A[:N]) nowait depend(out: *A)

#pragma omp target nowait depend(inout: *A)

foo(A)

#pragma omp target nowait depend(inout: *A)

bar(A)

#pragma omp target exit data map(from: A[:N]) nowait depend(inout: *A)

Process
0

Process
1

Process
2

foo(A)

bar(A)

A[:N]

A[:N]

A[:N]

Alfredo Goldman (gold@ime.usp.br)

Execution Flow

Alfredo Goldman (gold@ime.usp.br)

Programmer vs Runtime
● The programmer specifies through OpenMP directives

○ Target tasks with target nowait constructs
○ Data dependencies with the depend clause
○ Data mappings with map clauses

● The OMPC runtime system takes care of
○ Mapping tasks and data across the cluster to minimize

communication
○ Maintaining data coherence between tasks and nodes
○ Providing fault tolerance mechanisms

Alfredo Goldman (gold@ime.usp.br)

OMPC Runtime Workflow
● Distributed architecture

○ Head node manages the tasks
(load-balancing, etc)

○ Worker nodes execute the tasks

● 6-step execution

1. Program execution
2. Task generation
3. Task distribution
4. Task execution
5. Inter-nodes communication
6. Retrieve result

Alfredo Goldman (gold@ime.usp.br)

FPGA Integration

Alfredo Goldman (gold@ime.usp.br)

Execution Overview
Runtime Workflow with FPGAs

● 6-step execution

1. Program execution
2. Task generation
3. Task distribution
4. Task execution (CPU/FPGA)
5. Inter-FPGA communication
6. Retrieve result

● Communication

● Execution

Alfredo Goldman (gold@ime.usp.br)

OMPC FPGA Code
void vadd_hw(int *in1, int *in2, int *out, unsigned int num); // FPGA implementation prototype

#pragma omp declare variant(vadd_hw) match(device={arch(alveo)})

void vadd_sfw(int *in1, int *in2, int *out, unsigned int num); // CPU impl. prototype

...

int OpenMPVadd(int *in1, int *in2, int *out, int BS, int NB) {

 for(int i = 0; i < NB; ++i) {

 int *A = &in1[BS * i], *B = &in2[BS * i], *C = &out[BS * i];

 #pragma omp target depend(in: A[0], B[0]) depend (out: C[0]) \

 map(tofrom: A[:BS], B[:BS], C[:BS]) nowait

 vadd_sfw(A, B, C, block_size);

 }

}

Alfredo Goldman (gold@ime.usp.br)

The A-Machine

● A partnership USP, UNICAMP and
UFABC sponsored by FAPESP

● 4 nodes having 2 state-of-the-art
Alveo U55C per node (8 U55C total)
interconnected using fiber optic
cables

● One of the few in the World!

Alfredo Goldman (gold@ime.usp.br)

U
55

c

A0 Node

Switch (Inter-FPGA optical communication)
U

55
c

U
55

c

A1 Node

U
55

c

U
55

c

A2 Node
U

55
c

U
55

c

A3 Node

U
55

c

A0, A1, A2, A3: 2x Intel Xeon
Silver 4210R 10Cores/20Threads,
Base Frequency: 2.4 GHz, Max
Frequency: 3.2GHz, Cache:
13.75MB.
A0, A1: 192GB DDR4-2666
RDIMM ECC RAM, 1x 2TB 7.2K
RPM SATA HDD.
A2, A3: 128GB DDR4-2666
RDIMM ECC RAM, 1x 1TB,
ST1000DM010-2EP102 (CC46),
1x 1TB Samsung SSD 970 EVO
Plus

QSFP28 Cables

Current Switch model: DELL -
S4128F-ON (It has only 2 QSFP28
interfaces, but we need 16). Thus, we
ordered a new switch having more
QSFP28 (>16) interfaces

Alveo U55c

The A-Machine

Alfredo Goldman (gold@ime.usp.br)

Final Message

The Hardware is available and it is heterogeneous

It depends on us to use the hardware in a very effective way

Alfredo Goldman (gold@ime.usp.br)

