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Motivation

LHC expects more than exabyte of new data for each year of HL-LHC era from 2029-2040.
This data must be exported in ~real time from CERN to compute sites.

SKAO expects similar requirements during similar period.
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CMS https://atlas.web.cern.ch/Atlas/IGROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/
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Ramping up

A complex problem with many moving parts — All feasible methods to close the computing gap are being pursued
* Including HPC!

Astronomy and HEP see potentially large benefits in exploiting HPCs

Substantial technical investment during the last years which increased its usage

ATL AS Slots of Running jobs (HS06) by ADC activity
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Xavier Espinal, EuroHPC 23’
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https://home.cern/news/news/computing/cern-skao-geant-and-prace-collaborate-high-performance-computing
https://home.cern/news/announcement/computing/cern-geant-prace-skao-kick-workshop-high-performance-computing-29
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~

— o Four areas of work identified as foundational; continue to guide
development since 2021

: - Benchmarking
Z - Data Access
o Authentication and Authorization

= - Building a Common Center of Expertise
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Areas of work

« Benchmarking and Accounting

« Data Processing and Access

« Authentication and Authorization

« Software and Architectures

* Runtime Environments and Containers
* Provisioning

* Wide and Local Area Networking
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Benchmarking in HPC
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Benchmarking and Accounting

Adopting HPC compute resources presents several new
challenges beyond traditional x86 workload development:

» Diverse compute architectures (ARM, POWER, x86, Benchmarking is used at CERN for:
RISC-V) '

 Efficiency
« Heterogenous accelerators (GPU, FPGA, Quantum®)

. * Error detection
We must understand and account of all combinations of

above to understand: « Accounting
« Workload efficiency at runtime * Pledges
« Efficiency of grant usage * Procurement

« Mapping of users to resources
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HPC Benchmarking

HEP Benchmarking Suite: The next generation of benchmarking for

the WLCG , replacing HEPspec06 (over 15+ years use). » Reference HEP applications from

multiple experiments
* OCI Containers

HEP
Historically benchmarking has been: workloads

+ Designed for WLCG compute environment

* Intended for procurement teams, site administrators

«  First with VM containment, later nested docker images
» Uses workloads from HEP

experiments
» Produce single score (ala HS06)

None of these approaches are compatible with HPC!

. Refactor & re-tool for user execution at scale

 HEPscore now in transition phase to replace HS06

. https://w3.hepix.org/benchmarking.html

» Orchestrator of multiple benchmarks
(HS06, HEPscore, SPEC, etc)

HEP  Central collector & Reporter
Benchmark

Suite
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HEP Benchmark Suite
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N
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https://gitlab.cern.ch/hep-benchmarks/hep-benchmark-suite
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Automated HPC execution

Benchmarking Heterogeneous architectures
* Multi-arch as workloads become available (ARM, IBM Power ...)
 GPU accelerators (Madgraph5, MLPF)

Simple integration with SLRUM, other job orchestrators

PA)
SR l'- -------------- {7
L) ¢ _5 Otherdata R
module purge Y % comumer & [* &

module load singularity python3

RUNDIR:/tmp/HEP i : -Iogstash |||
( k| +-»| ®ms elasticsearch ---.:‘.,,,) g %

echo "Running HEP Benchmark Suite on $SLURM_CPUS_ON_NODE Cores" {‘f;- anAbo Layes Of: Pa kibana | Er—
mkdir -p $RUNDIR -3 i '
python3 -m pip install --user git+https://gitlab.cern.ch/hep-benchmarks/hep- : :
benchmark-suite.git § ; NDA DB

i
' =
\
; o B s E
e T = [T >
i . )
£17010 o S .. !
I e -

srun $HOME/.local/bin/bmkrun --config default --rundir $RUNDIR L Pistiiaiisiit

Procurement Teams

Hardware Samples @ Do
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Heterogeneous Benchmarking

Combination of General-Purpose GPUs (GPGPU) and alternatives architectures targeted by experiments for Run 4
GPU benchmarks for production workloads that operate on GPGPU and CPU+GPGPU

ARM workloads

MadGraph event generation for GPU and Vector CPUs

Event generation speedup, Nvidia A100

ATLAS Preliminary Process Madevent 262 144 events Standalone CUDA
2022 Computing Model } CPU: 2031, Aggressive R&D - -
2% Lﬂ*—mmwl Total  Momenta+unweight ( Matrix elm ) ME Throughput
" ete™ = ptp~ 179 s 10.2 s 78 s 1.9 x 10551
" +CUDA Tesla A100 100 s 100 s 0.02s 633.8 x 10651
1.8 x 1.0 x 390 x 334 x
Bl Data Proc
7% W MC-Full(Sim) gg — ttgg 209.3 s 7.8 s 201.5 s 2.8 x 103s!
v Merostiom  TCUDA Tesla A100 8.4 s 78 s 0.6 s 758.9 x 10351
B MC-Fast(Rec) 249 x 1.0 x 336 x 271 x
m EvGen —
Heavy lons gg — ttggg 2507.6 s 12.2 s 2495.3 s 1.1 x 10%s71
— 3;*‘;99”" +CUDA Tesla A100 30.6 s 14.1 s 16.5 s 170.7 x 10%s71
| eriv
o 7% Analysis 82.0 x 0.9 x \ 151x ) 155 x

CERN-LHCC-2022-005

https://indico.jlab.org/event/459/contributions/11829/
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ML/Al Benchmarking

Machine-learned particle-flow reconstruction algorithms (MLPF)
« Approach GPU workloads as repeatable benchmark
» Containerized in similar manner to traditional CPU benchmarks

» Support (multi) GPU accelerators for training/tuning
« Examine events/second processed (same metric as HEPiX CPU jobs)

Variable GPU—g:«\iﬂglz: ;ig(r’aﬂg;ﬁ; ann) Fixed GPU-grid size (fflgr;l_l‘?g‘,;!;f plateau)

: sv;:kL . TR ] aeepe 106 mm svoL  mm cocos  mm cupa .
Kol
|8 e . o7 Intel 8362 (64 cores) || EENGR
ooy M ggl0° m Score...
o £ S
T %80
g5 5
o 2 Intel 8480+ (224 cores) [

(gg_ttgg) 16k threads — 256 10°

ocC
T2 LAY LTRSS T A
Total Threads Launched

Nvida vV100-32G (5120 cores) [
» Nvidia GPUs: the performances of the SYCL implementation seems ~comparable to direct CUDA for gg—ttgg

— More fine-grained analysis on the next slide, for different physics processes o
Nvidia AL00-40G (6912 cores) |

* Intel and AMD GPUs: the SYCL implementation runs out of the box
0 5 10 15 20

Xe-HP is a software development vehicle for functional testing only - currently used at Argonne and other customer sites to prepare their code for future Intel data centre GPUs

XE-HPC is an early implementation of the Aurora GPU
=]

(LZ*; A Valassi — CPU vectorization and GPUs in Madgraph5_aMC@NLO CERN Openlab workshop, 16 March 2023 16
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Understanding workload efficiency

Efficiency profile of typical HEPscore benchmark

Utilization at runtime is critical to benchmarking and MUISGEN cevsimeco CMSGENSM _ CMSDIGI  CMSRECO LHCb GEN-SIM
. T E ' : ' ' '
roduction < ok : f — : : verw oo’ v v
P i OO
* PRmon plugin to HEP benchmark suite enables profiling g ={- : : : :
of CPU utilization 2 Wl i
« Profile both native and containerized workloads ol
- ldentify issues, acceptance testing, verification olf-
DcI:' ' '40J6£' — 500 L;'anm' lw'm‘olﬁ' B | 7 T R TS
i Wall Time (s)
PRmon source: https://github.com/HSF/prmon
8 oE- i
B wE— -
R = :
T B .
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https://indico.cern.ch/event/1078853/contributions/4576275
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Energy efficiency

Energy efficiency is now considered a critical metric of performance

* Plugin to poll server power metrics (ipmi)
Variation of Server Power Consumption with Time

1100
« Compare Nvidia-smi, ipmi & external metering 1000 L“f""w} M \’AT H MH H
900
’3“ 800
* BMK include energy metrics from CPU E’ 700 W ) W I | A | —ioh |
g- 600 l U U LJ
% 500
g 400
- 300
—— CPU-only run
200 . CPU + GPU-run
GPU power consumption for CPU+GPU run
100
0 i i i ; ,
0 200 400 600 800
Time (s)
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Some numbers

Initial models expect 1 Exabyte physics data processing in 100 days.

HEP experiments will no longer be able to store all the produced data at a single site - it must be
streamed in ~realtime.

Goal is to stream & process 10 PB of physics data through a HPC site in a day: several hundreds of Gbps
continuously.

« Challenge of increasing complexity: start with 10-20% goal (1PB), demonstrate management of
hundreds of TBs data

« Maintain compute efficiency with high data rate in/out from/to storage & stream

=1, CERN
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Storage

HPC storage is typically built from a common set of commercial building blocks.
Although standard, they are uniquely implemented at each site:

« Variable number of replications, metadata nodes, interconnect capabilities

« Little to no visibility into capabilities, usage, accounting, etc.

Lots of moving parts! Break it down into three general areas:

« Data ingress/egress from HPC center
 Efficient usage of storage systems on site

« Dynamic scaling interaction between (1) and (2)

=¥ CERN
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Total Bandwidth vs. n nodes
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Data formats

Data format drastically affects HPC storage efficiency:

» Writing data in storage format supporting parallel 1/0O

« Optimization: Tuning of parallel libraries to optimize the performance
» Adopting native object storage (HDF5) native to parallel 10

» Dramatically reduce random read during jobs

ROOT

v Data Analysis Framework

=¥ CERN
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Data Lakes

Separation of WLCG sites responsibilities to new “Data Lake” model for LHC data storage has introduced new standards
and modernized capabilities. Leveraging better data access patterns to datasets with latency-hiding advancements of

XrooD/Xcache greatly reduces data transfer requirements:

* RUCIO - a high level data management layer, coordinates file transfers over several protocols (HTTP/WebDAV, XrootD,
GridFTP, S3)

« FENIX — Collaboration with HPC sites and ESCAPE to standardize data transfers

‘ European Science Cluster of Astronomy &
Particle physics ESFRI research Infrastructures
\ RESEARCH INFRASTRUCTURE \

=¥ CERN
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HPC Connectivity

Successfully exploiting opportunistic HPC allocation demands high connectivity for data-driven workloads. CERN current
target ~5Tbps connectivity by time of HL-LHC from CERN TierO to compute sites. WAN from HPC sites may be limiting
factor for resource allocation without pre-placed data.

HPC Data challenge composed of EU Projects (CoE RAISE, InterTWIN), WLCG, and GEANT to validate data-driven
streaming and transfers

 Leverage GEANT Data Transfer Nodes (DTNs) around EU for testing against backbone network
« Testing Unicore FTP (UFTP), FTS, Rucio for open science with HPC

* Currently exercising 200Gbps tests with Julich HPC Centre, DE

=¥ CERN
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Authentication & Authorization




HPC and Authentication

HPC sites operate differently regarding account creation and access policies from from traditional WLCG:
« Varying levels of trust requirements
» Authentication methods (SSH, Certificate, tokens..)

* Not reasonable to expect importation/trust of CERN computing accounts (16k+)

=¥, CERN
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AAIl Transformation

WLCG transition from certificate-based authorization to token-based carries through into HPC .

Among several components of the ESCAPE project, AAl aims to bridge CERN AAI to HPC
« OIDC-token Authentication migration from X.509 Certificate — faster, easier for institutional trust
* Federated login AuthN/AuthZ for HPC via EAuGAIN federation/Puhuri

ESCAPE IAM has been integrated into the EOSC AAI federation in collaboration with GEANT,

ESCAPE

European Science Cluster of Astronomy &
Particle physics ESFRI research Infrastructures

ESCAPE project completed Summer 2022 after 42 months

=¥ CERN
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Outlook
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Future Direction

Much effort has been invested into HPC adoption in the past years, but challenges still remain:
* Integrating independent machines as single entities, requiring specific integration

» Access and usage policies, available services, system architectures and machine-lifetime.

» Software deployment, edge services for data and workflow management,

Moving towards a General Purpose HPC — addressing HPC as a common machine

« Enable flexibly and elastically expanding the resources available to big data sciences

=¥ CERN
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SPECTRUM

Computing Strategy for Data-Intensive Science Infrastructures in Europe

Objective:
Deliver a Strategic Research, Innovation and Deployment Agenda (SRIDA) which
defines the vision, overall goals, main technical and non-technical priorities,
investment areas and a research, innovation and deployment roadmap for data-
intensive science and infrastructures during 2025-2035

Vision;
Data-intensive scientific collaborations have access to a European exabyte-scale
research data federation and compute continuum

Duration:
From 2024, 30 Months

Members:
EGI, CERN, SKAO, INFN, LOFAR, CNRS/JPV, EuroHPC (FZJ, CINECA, SURF),

Other partners being contacted

=¥ CERN
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App
SPECTRUM VO 1or 204,

Computing Strategy for Data-Intensive Science Infrastructures in Europe

Objective:
Deliver a Strategic Research, Innovation and Deployment Agenda (SRIDA) which
defines the vision, overall goals, main technical and non-technical priorities,
investment areas and a research, innovation and deployment roadmap for data-
intensive science and infrastructures during 2025-2035

Vision;
Data-intensive scientific collaborations have access to a European exabyte-scale
research data federation and compute continuum

Duration:
From 2024, 30 Months

Members:
EGI, CERN, SKAO, INFN, LOFAR, CNRS/JPV, EuroHPC (FZJ, CINECA, SURF),

Other partners being contacted
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Portable frameworks

NVIDIA
GPU

AMD GPU

Intel GPU

x86 CPU

FPGA

CUDA | Kokkos | SYCL HIP

intel/livm q
compute-cpp hipcc
openSYCL
intel/livm

hipcc

oneAP|
intel/livm

oneAPI
intel/livm
computecpp

CHIP-SPV:
early prototype

via HIP-CPU
Runtime

via Xilinx
Runtime

(OpenAreg, Intel,

OpenMP | alpaka

nve++
LLVM, Cray
GCC, XL

AOMP
LLVM
Cray

Intel OneAPI

compiler prototype

nve++
LLVM, CCE,
GCC, XL

prototype
compilers
SYCL
etc.)

CHEP 2023 https://indico.jlab.org/event/459/contributions/11807
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protytype via

std::par

oneapi::dpl
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