

Extreme scale dataflows in the continuum for next gen giant observatories

Damien Gratadour

ECLAT Cyber-infrastructures for SKA

SKAO: the largest (radio-)telescope

1 observatory: 2 telescopes (Australia & South Africa) + Headquarters (U.K.)

A giant software observatory, streaming data globally

ECLAT Cyber-infrastructures for SKA

SKAO: unraveling the unknown

SKA– Key Science Drivers: The history of the Universe

Testing General Relativity (Strong Regime, Gravitational Waves) Cosmic Dawn (First Stars and Galaxies)

> Galaxy Evolution (Normal Galaxies z~2-3)

Cradle of Life (Planets, Molecules, SETI)

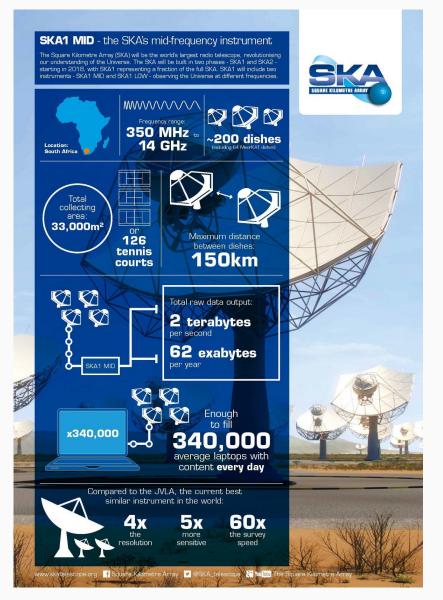
Cosmic Magnetism

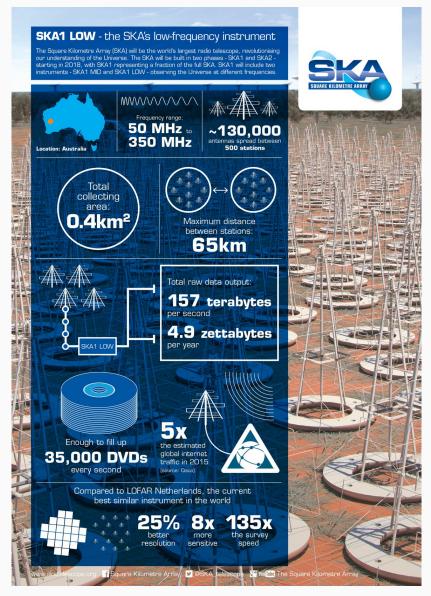
(Origin, Evolution)

Cosmology (Dark Energy, Large Scale Structure)

Exploration of the Unknown

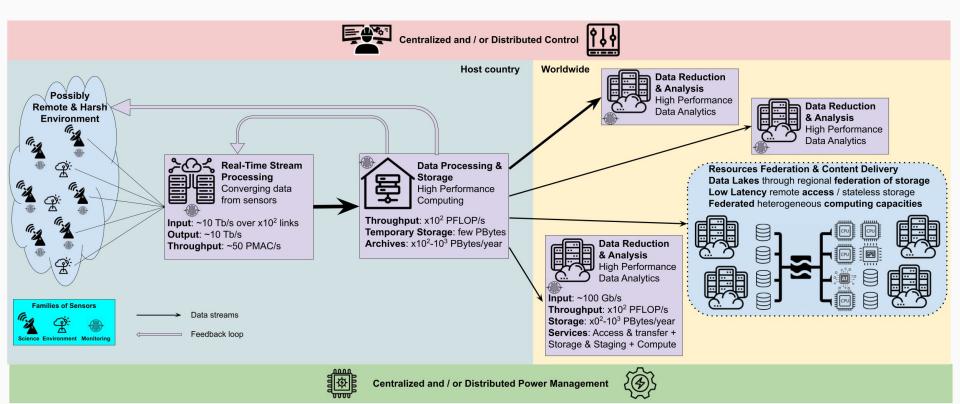
A truly Global infrastructure


End users communities across the globe



ECLAT Cyber-infrastructures for SKA

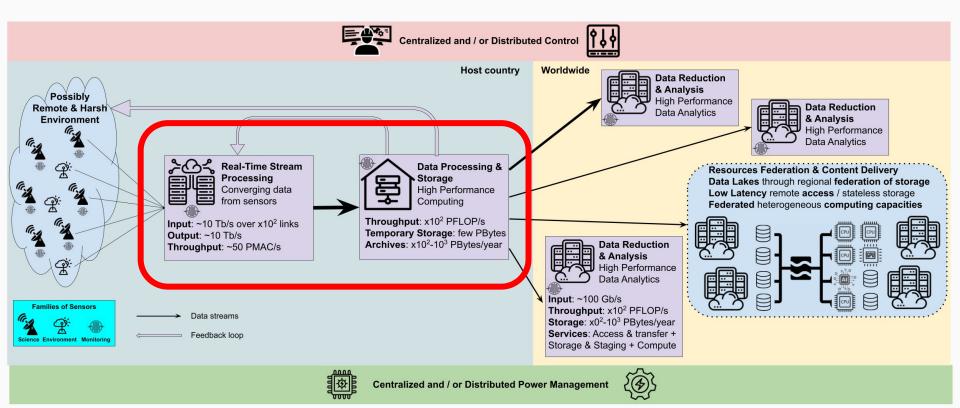
SKAO: Strawman view



Cyber Continuum for SKA

Hierarchical architecture: system of systems

- Large amount of distributed & heterogeneous sensors
- Real-time stream engine for raw data convergence
- State-of-the-art datacenter for processing, storage and distribution
- Distributed network of national HPC facilities for content delivery to the users



Edge-to-HPC computing for SKA

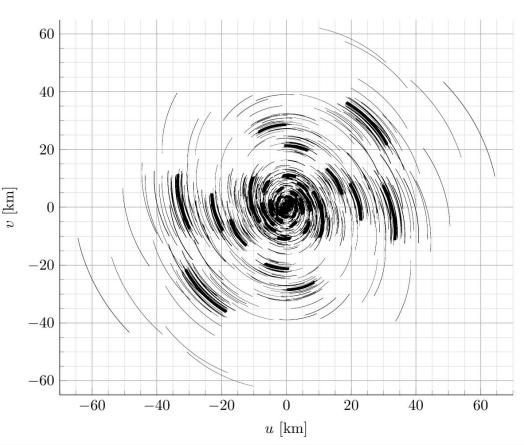
Collect, Converge and Reduce data streams from distributed sensors

- In situ & Online data processing with centralized HPC systems
- Reduce continuous 10 Tb/s stream to 350 PB/year of data products
- Affordable / Adaptable / Frugal / Resilient
- Duplicated in two host countries (with centralized control in UK)

SKA computing challenges

Typical acquisition and processing pipeline

- Combine pairs of signals to create "visibilities" receiver
- Iterative algorithm to perform image synthesis incl. calibrations + deconvolution
- Multiple targets (planets galaxies, cosmic dawn): variable obs. scenario
 = variable workload

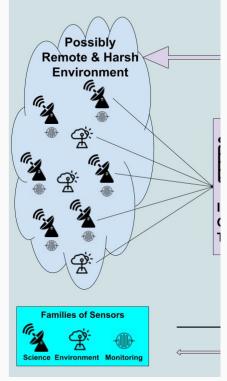


SKA computing challenges

Imaging:

- Earth rotation synthesis: increasing frequency plane coverage over extended observation time
- Both iterative (deconvolution) and incremental (observing time)
- Trade-off between online processing (buffer based) and batch processing (storage)

Large collection of distributed & heterogeneous sensors 3 families of sensors:

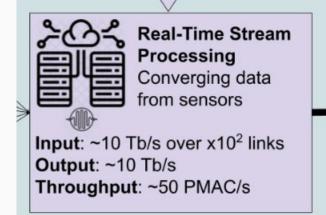

- <u>Science</u>: detect signals from object of interest
- <u>Monitoring</u>: monitor hardware (detector, components, etc..) state
- <u>Environment</u>: measure environmental conditions (humidity, temperature, etc..)

Distributed over large area:

• x10² km2 for SKA

Data convergence challenge:

- Use monitoring and environmental sensors information for:
 - Calibration
 - Health / status monitoring & anomaly prediction
- Require a loopback system to optimize science data quality & analysis
- Embedded analogue computing & digitalization with sensors

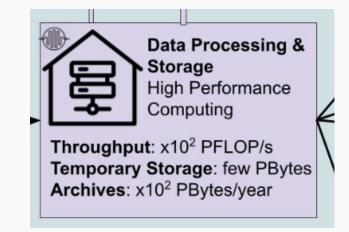

Real-Time Stream Engine to produce raw data

Data frontend: converge signals from x10² to 10³ links

- ~10Tb/s to 1 PB/s of data as input
- I/O bound computing (~50 PMAC/s)
- Aggregation, convergence, filtering & selection of data
- No reduction & storage for SKA and 10³ reduction for CERN, as output

Constrained environment (and remote for SKA):

- Energy consumption
- Complexity & Cost
- Reliability & Maintenance



Raw Data Processing, Storage & Distribution

• Data intensive compute facility (10 Tb/s of input data + pre-Exascale Throughput)

Hierarchical storage strategy

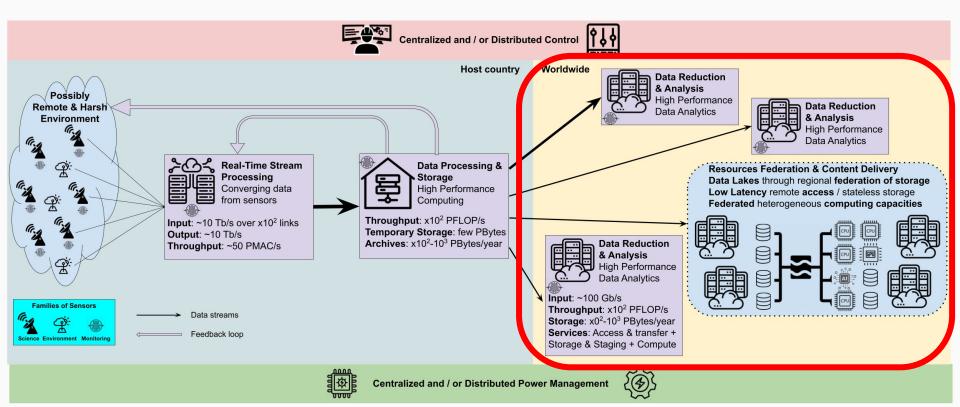
- R/W to storage at high bandwidth
- Large storage capacity (x10² 10³ PBytes / year)
- Short term buffers versus data archives

Heterogeneous workloads: from I/O bound to compute bound

- In the case of SKA: Low arithmetic intensity, Iterative process
- In the case of LHC: Compute intensive steps for reconstruction and IO bound steps for analysis

Output data products distributed globally

• Worldwide multicast over 100Gb/s links



HPC-to-Cloud computing for SKA

Federate resources to analyze distributed data

- Rely on external resources (regional centers), possibly at continental level
- Federate: compute, data logistics, storage, wide-area workflows
- Increasing use of AI for many science programs
- Access patterns, provenance, resources accounting, power management

Local Facilities for Data Reduction

Relying on "external" facilities for analysis work

- National or Regional facilities
- No control on design and operations
- Throughput needs depend on workloads.
 Typical requirement is x10² PFLOP/s
- Accounting of resources usage

Data Reduction & Analysis High Performance Data Analytics

Input: ~100 Gb/s Throughput: x10² PFLOP/s Storage: x10² PBytes/year Services: Access & transfer + Storage & Staging + Compute

Handling massive amounts of data on shared facility

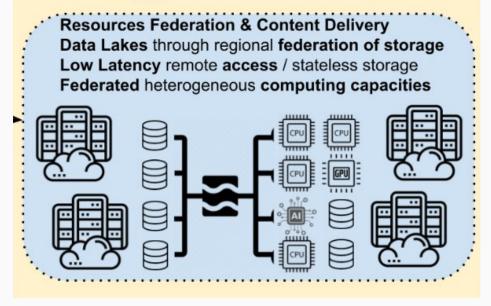
• Standardized strategy for data handling (access & transfer together with storage & staging)

Workloads need to run on a variety of heterogeneous environments

- Portability is key
- Ability to optimize performance on a variety of environments

Regional Facilities for Data Reduction

Federated computing to process data lakes

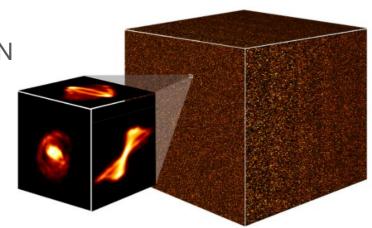

- Provenance (workflow and data)
- Global accounting
- Resources preemption strategy

Content delivery

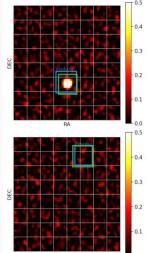
- Remote access and latency hiding
- Secure access

Resources federation

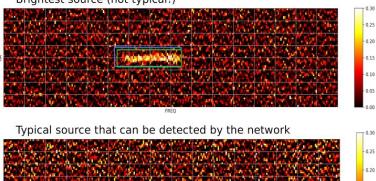
• Services, runtimes and algorithms for federated & heterogeneous computing



HPC-to-Cloud computing for SKA


A French Success: SKA Data Challenge 2

- Source detection and classification using DNN
- Merging catalogs produced by 2 models
- ~1TB of data,: 25 GPU hours on Jean Zay
- Score: sensitivity + precision



Brightest source (not typical!)

0.15

- 0.10

Challenges across the continuum

Facilities operations

- Multiscale system of systems
- Intercontinental control strategies
 - Including "owned" and "shared" facilities
- x10 years typical lifetime
 - Continuous integration of emerging & non-conventional technologies
 - Preserve operations

Facilities management

- Limited power envelope
 - Access to power grid
- Cost containment
 - Mostly relying on taxpayers money
- Optimized operations
 - Dynamical cyberinfrastructure, including reconfigurable HPC

Centralized and / or Distributed Control

Centralized and / or Distributed Power Management

What sustainable means ?

"meeting the demand of current generation without putting the demands of future generations at stake"

Can be analyzed as the convergence between:

- Economic
- Social
- Environmental

- make contributions on all fronts
- come with negative impacts



ECLAT Cyber-infrastructures for SKA

A SWOT analysis on sustainability

Horizontal challenges, addressed sustainably

SKA is representative of a new class of global infrastructures

- Cover the full edge-to-HPC-to-cloud continuum, with strong inter-dependencies
 - Interoperability (functional + non-functional) is a key requirement
- "Operational" cyber-infrastructure (as opposed to digital twins)
 - **R.A.S** (Reliability, Availability, Serviceability) of all components is mandatory
 - **High efficiency** of all components is required

Need to address the continuum as a whole

- Improving one aspect (e.g. energy efficiency) of one component (e.g. HPC) impacts others (e.g. sensors / edge)
- Covering many domains: access to energy, TCO, predictive maintenance, etc..
- Harnessing many technologies: AI, cyber-security, HPC, big data, etc ...

Let's do it sustainably !

All aspects of sustainability represent both opportunities and challenges

- Close partnerships with industry
- Maximize positive societal impact
- Minimize environmental impact

The pathway to sustainability

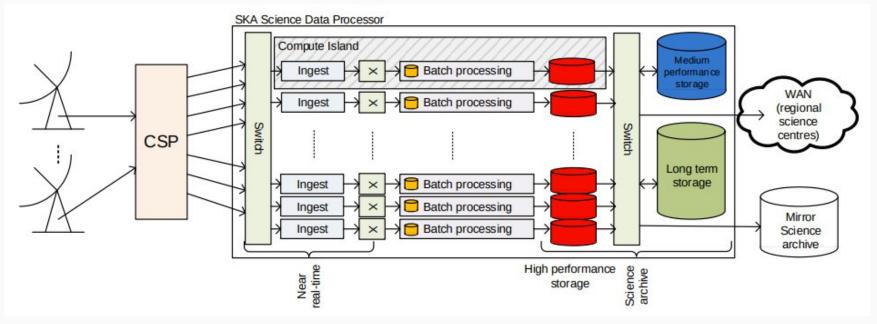
- Tackling inter-dependencies between 3 dimensions:
 - Societal: Enhance access to affordable services and knowledge

- Cross-fertilization across application domains
- Environmental: Global Energy efficiency, across the continuum
 - Key responsibility: reduce impact of major infrastructures

	$\left(\right)$	
--	------------------	--

- Operational constraints: Maintain operations (thus European leadership) over long lifespan
- **Economic**: joint public-private development of sovereign technologies

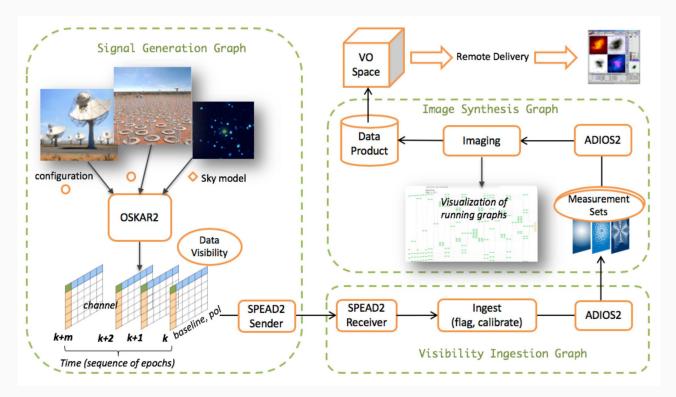
- Strengthen industry across the continuum: increase business opportunities, create jobs
- Reduce development & maintenance cost



SKA SPC co-design

Co-design, development and validation of building blocks

- In-situ / online stream processing & data pressure management
 - Incl. Multiple concurrent workflows (fast + low res versus HiFi image synthesis) in iterative + incremental pipeline
- Coupling DNN & large scale HPC workflows
- Data life cycle management (provenance & layout) as core topic (interoperability with regional centers component)



SKA SPC co-design

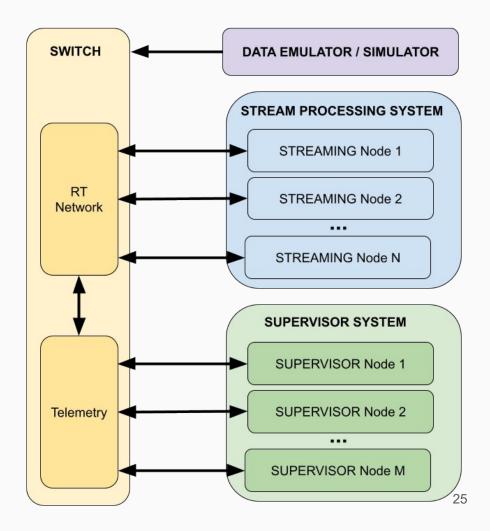
Demonstrating the SKA online workflow at full scale

- Addressing Edge-to-HPC component
- Going beyond Gordon Bell finalist study from Wang et al. 2020
- From data generation to Scientific Data Products
- Including **frugality and resilience** as sustainability indicators

Supporting initiatives

ECLAT: Laboratoire Commun CNRS-Inria-Atos (head: D. Gratadour)

- Support structure for French contribution to SKA
- In kind contributions from partners, incl. **INSU, INS2I, INSIS**, multiple **Inria** teams together with **Atos R&D** and business dev.
- Truly multi-disciplinary and trans-sectoral collaboration



Supporting initiatives

STREAMS: a continuous integration platform

- ~1M€ hardware budget
- built around x10 Tb/s backbone
- Significant donations from vendors (NVidia, Graphcore)
- Strong contributions from industry partners (Thales, REFLEX CES)
- Collaboration with IDRIS (host), GENCI and other partners
- Integration in national ecosystem (e.g. PEPR ORIGINES)
- Additional partnerships being discussed ...

Supporting Initiatives

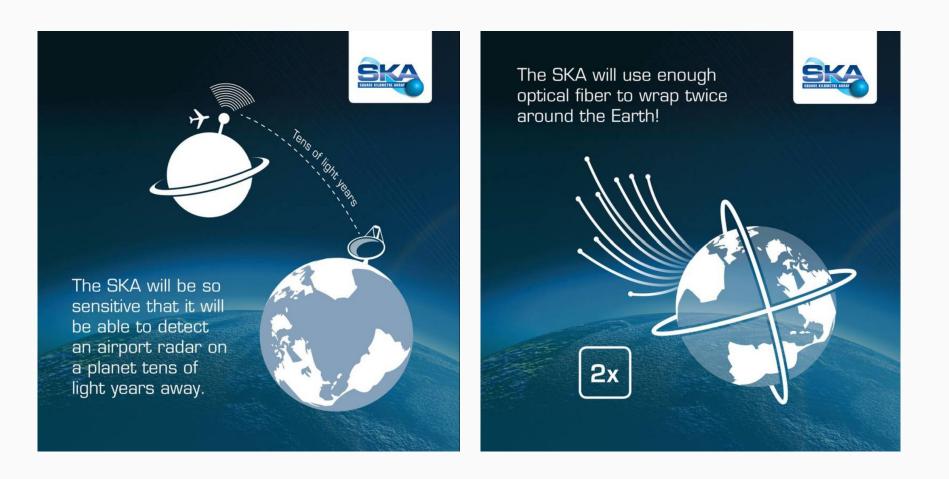
Fostering disruptive R&D in Europe

- TransContinuum initiative (TCI) from ETP4HPC
- 8 associations in Europe covering the whole compute continuum (inc. BDVA, HiPEAC, 5G IA, etc ..)

- Working on white paper with CERN on Big Science Infrastructures
- Contribution to ETP4HPC Strategic Research Agenda
- Working closely with experts and advisers to progress EU roadmap on cyberinfrastructures using **SKA challenges as pilot for future global needs**

SKA & NumPEx (Exascale national program)

SKA: opportunity to address wide range of topics (ExaFlops & ExaBytes)


- Although France is getting back onboard "late", strong science community, federated through ECLAT can provide support
- Highly challenging but far reaching visibility
- Designing solutions for a 50 years lifespan: sustainability as key indicator
- Strong link with industry is desired: return on investment

Transverse topics:

- Cybersec (AAI) together with data lifecycle management (provenance & layout)
- Frugality (power efficiency) together with interoperability (full continuum) & resilience (continuous operations)

Significant contributions from / to NumPEx:

- ExaDoST & ExaDiP clearly contributing to French roadmap:
 - Construction phase of observatory + scientific exploitation

That's it for today !