

Artificial Intelligence for the Development of Remote Medicine via Audio Analysis

Marcelo Finger – Coordinator, CS-IME-USP

Universities - USP, UTFPR, UNESP

Computer Science, Faculty of Medicine, Linguistics and Letters, Mathematical Sciences and Speech Therapy

SPIRA: System for Early Detection of Respiratory Insufficiency viaAudio Analysis

Why detect respiratory insufficiency?

Initial response of the Artificial Intelligence (AI) area to the COVID-19 pandemic

- Silent hypoxia, serious COVID-19 symptom
- But also: Influenza (H1N1), heart disease, lung problems, sleep disorders, anxiety attacks, etc.

Idea

- Ester C. Sabino, FM-USP
- Anna Sara Levin Shaferman, FM-USP
- Marcelo Finger, IME-USP

Project Start

• Approval from Ethics Committee (CEP-HC-FMUSP)

ŠPIRA

- Financing: Fapesp Project 2020 / 06443-5
- Organization of a multidisciplinary team
- Currently: Phase 2 data collection

Project Organization: Phase 1

Database construction: speech as a biomarker, "wild" data

Pre-processing of audio samples

Three investigative fronts:

- 1. Prediction: Big Data Approach (Black Box)
 - 2. Detecting Respiratory insufficiency with Machine Learning
- 3.Data description: Small data approach (White box)
 - 4. Statistical description of respiratory failure in audio samples
- 5.Software development for data collection/prediction

Initial Dataset Construction

Covid19 Voices

Approx 600 samples HC+HU+BP

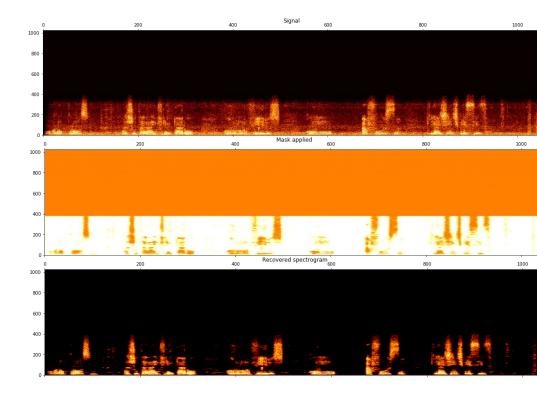
Collecting ward backgrund noise

Healthy Voices (Control) Over 6000 voice donations

Data Collection: Phase 1

- Nurses and doctors unavailable (pandemic overload)
- Collection made by medical students or foreign medical visitors, coordinated by Dr Anna Sara Levin
- Cell phone use in COVID wards (no special equipment)
- Program via whatsapp (opus format)
- COVID wings:
 - Public university hospitals: Hospital das Clínicas, University Hospital
 - Private hospital: Beneficência Portuguesa
 - First wave of the pandemic (06-07/2020)

Pre-processing

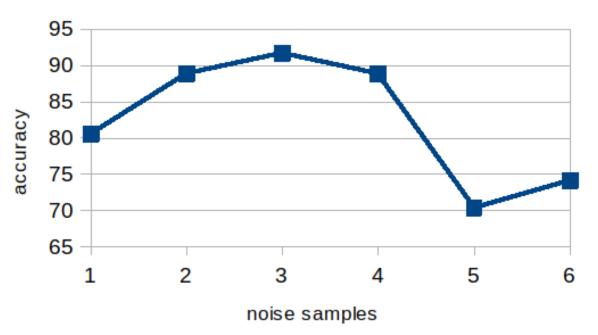

Background bias

- Very noisy COVID wards
- Donations in "different" environments

Would we lose information in sound filtering?

Need to compensate for bias due to background noise

Dilemma: noise reduction *vs* **noise insertion**


Big Data: Results

Balanced data: patient/control, gender, age

Technique for dealing with audio bias in "real" situations

- Neural networks over MFCC-grams
- Insertion of noise in patient and control data
- CNN Technique: Accuracy 91%

Respiratory insufficidency can be detected in speech with 96.5% accuracy, using Transformers neural nets

ŠPIRA

Small Data: Signal Description

Two general hypotheses

- Pauses are longer in patients
- Most frequent vocal deviation in patients

Results: Pause as a Biomarker for COVID-19: First prize at the Brazilian Speech Therapy Symposium

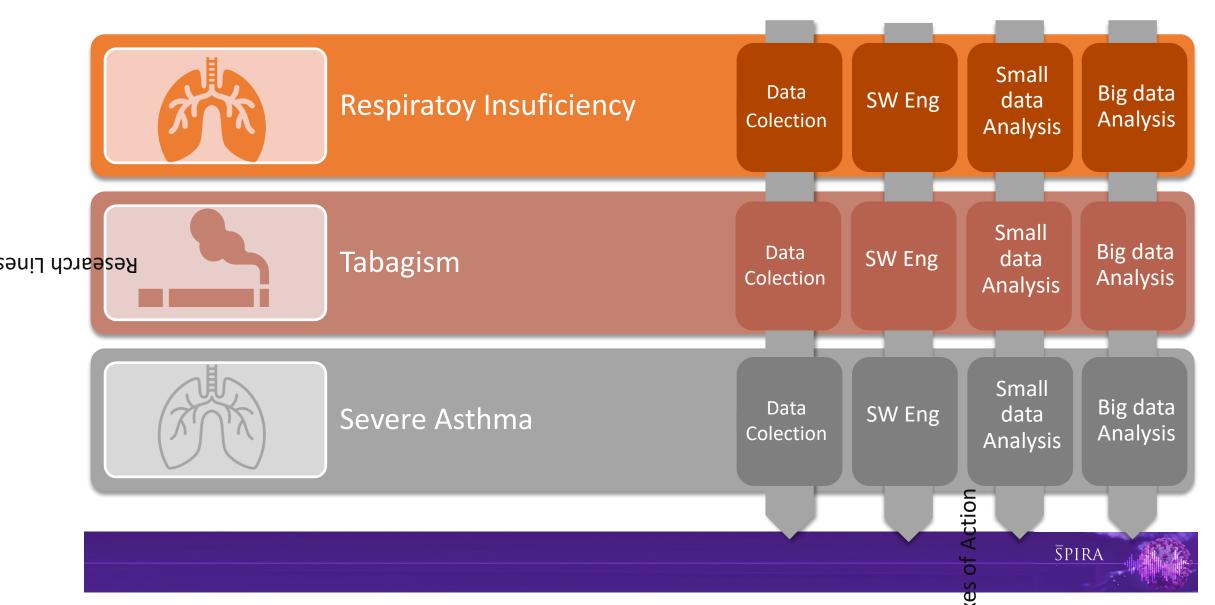
ŠPIRA

To do: Identification of differences between patient/control groups:

- temporal measures
- prosodic measures
- spectral measurements

Other Results

- INTERSPEECH Stefan Steidl Computational Paralinguistics Award, COVID-19 Cough Sub-Challenge Prize 2021.
- First Place: Speech Emotion Recognition in Portuguese, SE&R2022


Second Phase

Second phase data collection (BP, UNIMAR, Sta Casa Marília):

- 1. General respiratory insufficiency
- 2. Influenza (H1N1), heart disease, lung problems, severe asthma, sleep disorders, psychiatric disorders, post-covid, etc.
- 3. IR source classification by machine learning
- 4. SpO2 prediction by voiceSegunda fase de coleta de dados (BP, UNIMAR, Sta Casa Marília)

Project Sequel: SPIRA Biomarkers

SPIRA-BM: Respiratory Insufficiency via audio analysis

- Detection of RI from several etiologies (causes):
 - Heart condition, COPD, Influenza, Asthma etc, besides COVID
- Predicting the most probable etiology for RI
- Oxygen Saturation regression (SpO2)
 - Early results show this is harder than RI detection
- Clinical tests for AI tool

SPIRA-BM: Tabagism

- Estimation of COex
 - Can exhaled CO be detected by audio analysis?
 - Gamification of Smoking Cessation
- Estimation of "Tabagistic Load"
 - Can we detect the number of years of smoking activity by audio analysis?
- Respiratory insufficiency due to smoking

SPIRA-BM: Severe Asthma

- Prediction of asthma exacerbation (attack) by audio analysis
 - Improve patient quality of life
 - Decrease costs due to hospitalization
- Can we predict an attack 48h before it occurs
 - Development of new therapies (respiratory physical therapies)
- Respiratory insufficiency due severe asthma

OBRIGADO! Marcelo Finger mfinger@ime.usp.br

