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Introduction
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One of the main problems in meteorology is how to - TR DAl L
combine the different weather forecasts that an ensemble - o wr
model produces into one single solution. Numerical 3 i
models that simulate the atmosphere in the entire globe Pl e L SR
are developed and run every day in various research and seres_urucu o’
commercial centers around the world, assimilating g
observed data to assimilate into their own physical " } Fi| T &
descriptions. | |
These forecast models, which include temperature, wind, FLEREe DORNIEme—Plenc DOnOrme e 0o oo coche T
orecipitation and several other variables, often work R B _
petter under certain atmospheric systems than others, | Gz
oroducing a scenario where there is not a model that
performs better than the others in a general picture, for :
Instance in the whole region of South America. - _
The main aim of the project was to develop a composition ' T BN
that is able to produce the best possible weather forecast herros sul_ = *0 ke e - parmbas -

for the whole continental region, based on the everyday-
runs of several weather forecast models available from

Figure 3: T-SNE maps of the combined model metrics for precipitation in each of the brazilian climate
regions. The X mark represents what would be the “perfect model” with the best metrics.
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different centers.

Region classification

Based on these distances, we compose a rank list with
weights for each model to be summed together in a final
solution (Figure 4).

rank jguanabara tiete paranapanema planicie_borborema planalto _borborema COsta Ccacau vale ribeira xingu_tocanting
wcpt_as MOO1 0.554
w27a_as MD01 0,180  wcpt as MODD 0.177 wept_as MO01 0.204
gem_glo_M001 0.178
wcpt as MOO1 0.052  wcpt_as_MO01 0.158 gem_glo_M0OO1 0.036 w27a_as_M0O01 0.148 wcpt as MOO1 0.078 w27a_as M0O01 0.125
pem_gloMOO1 0.099 gem_glo_M001 0.136

The first step was to separate and classify the South §
America Into several pieces with a self-defined climate

igem_glo_M0010.247 |

pt_as MO01 0.011 geps_glo_MO011 0.009
wcpt_as_ MOOO 0.000
pt_as_M0O0O 0.000 wipba_as_MO00 0.000 wcpt_as_M000 0.000 wipba_as_MO0O0 0.000 wcpt_as MOOO 0.000  wcpt_as_M0O0O 0.000 wcpt_as_MOO0O 0.000
pha_as MOOD 0.000 w27a_as MO01 0.000 w3pba_as MODOD 0.000 w27a_as MO01 0.000  w3p5a_as_MOOD 0.000 w9p5a_as MOOOD 0.000 w3p5a_as_MO0O 0.000

behavior. For this, we used gridded (0.5° resolution)
observed data (max and min daily temperatures, and daily
precipitation) from NOAA Climate Prediction Center to
compose a daily climatology of the last 7 years. With this,
we assumed each pixel as a sample and the timeseries of
the temperatures and rain as “dimensions” (features) that
compose this climate character to clusterize the pixels into
a 2D map of clumps by using the T-SNE (t-distributed
stochastic neighbor embedding) algorithm.
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ank jguanabara tiete_paranapanema  planicie _borborema lanako borborema costa cacau vale ribeira xingu_tocantins
gem_glo_M000 0.442 Mwmaww 0.599
w27a_as M0I00 0.420 geps_glo_M008 0.212 em_glo_MO00 0.092 5 .
eps glo MO18 0.054 gem glo MOOD 0.049 w27a_as_WO00 0.064 geps_glo_M012 0.082
gem_glo_M000 0.063 geps_glo_MO002 0.036
geps_glo_M019 0.032 eps gl MIOT 0.030

eps_glo_MO013 0.009 geps_glo_M013 0.012

geps_glo_M009 0.013 geps_glo_M015 0.031
geps_glo_M016 0.011 geps_glo_MO011 0.022
geps_gho_MODE 0.008 geps_glko_M019 0.014

wept as MODD 0.000  w2Ta_as MOO0D 0.000  wept as MOODD 0.000 wept_as_MOOD 0.000 w2'."a__a,s_mﬂﬂ {I..{I{I{I
geps_gko_M0O20 0.000 w27a_as MI00 0.000 wept_as MOO0OD 0.000 gem_glo_MO00 0.000
geps_gko_MO20 0.000 geps gk _MO18 0.000 geps_glo_M0O20 0.000 w2T7a_as_M000 0.000 geps_glo_M019 0.000

Figure 4. Example of the weight table with the ranked models for each climate region. Upper table
contains the temperature rank, and the bottom table contains the precipitation ranks
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Temperature bias correction

Gridded models are not able to fully reproduce the
weather from seaside cities and locations close to sharp
landscape features due to their resolution. Often, seaside
city coordinates fall into a pixel that is mostly water, so the
temperatures are far from realistic.

To address this problem, we developed 7 different bias
correction methods based on observed data, and
clustered the bias behavior for each weather forecast
model, so we fit the most suitable correction to a given
bias pattern. The improvement can be seen in figure 5.

Figure 1: T-SNE manifold (left), correspondent geographic info of the clumps (middle) and landscape
map of the brazilian region

As a matter of fact, we were able to reconstruct | 3
landscape and biome features only by using climate data.
This regionalization aims to analyze the behavior of the
models in each type of climate, keeping consistence of
regimes that dominate these regions.
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Figure 7: Combined precipitation map
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Figure 2: Final region configuration in the South America (left) and Brazil (right)
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Model evaluation

There are several types of accuracy metrics to evaluate
how a model performs when compared to real observed
values, and among them are pearson-r, RMSE, R?, etc. The
problem arises from trying to combine these metrics into
one to determine the performance taking all of them into
account, as errors are not limited, correlations lie between
-1 and 1 and so on.

We Interpolate grid surface data from a vast list of realtime
weather stations to compose our historical observed
reference and evaluate the metrics of the model over their
daily runs.

Since T-SNE seeks to preserve similarities, we can define a
“perfect” model by setting its features as the best metric
values (1 for correlations, O for errors, etc) and run it
together with the models (as the T-SNE samples), so the
distance of the models to this “reference model” can be
seen as how well the model has performed (Figure 3).

Figure 5: Upper panel shows the temperature timeseries for the Arraial do Cabo — RJ case, where the
original GFS model data is the blue line, the observed is the green, and the bias-corrected is the red
line. In the bottom panels, we show the overall bias for GFS (left) and the bias-corrected version (right)

Final combination

The final combination extracts the ranked regions for
each weather model with shape-based weight maps, use
the a digital topography map to bring the values to sea
level (in the case of temperatures), and adds them
together to finally transform back to the original elevation.
For the precipitation, we use a map 3-hour rain probability
based on all the models to impose a cutoff below 7%, so
we lower the false alarm ratio. The final products are
shown in figures 6 and 7.

Figure 9: Precipitation RMSE for Chimera, GFS and ECMWF
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