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Abstract

Whenever a photon and fermions coexist in a theory, the need to preserve gauge invariance

forces us to build a gauge covariant derivate, which in turn requires the photon and fermion to

couple in a very specific form. For just one fermion (say the muon) the resulting Lagrangian then

has the known form

L = −1
4
F 2
µν + ψ̄(i /D −m)ψ (1)

This Lagrangian has many testable predictions, but perhaps one of the most known is that it

implies that theMuonmust have an intrinsic magnetic dipole moment∝ g~S (~S being the spin). At
tree level, one can readily verify that g = 2 exactly, however, as onemight expect, renormalization
due to loops leads us to find a correction (the g − 2), the value of which, for the electron, is one
of the best measured quantities in all of physics.

The aim here is to consider an extension of the Standard Model, particularly, the Supersymmetry

extension to the QED sector. Because this extension couples to the original SM, new processes

are, in principle, possible, which in turn should contribute with new corrections to the g− 2. We
can then measure difference between the experimental value and the value predicted by the

SM, then working under the assumption that the difference is due to SUSY, estimate bounds for

where the SUSY scale is.

Finding g in standard QED

In order to understand the SUSY correction, it’s important to stress where the correction comes

from in usual QED. To see it, notice that the equation of motion for the quantum field, obtained

from the Lagrangian in (1), (i /D − m)ψ = 0, can be written as ( /D2 + m2)ψ = 0. Now, remember
that the gauge covariant derivative is given by

Dµ = ∂µ + ieAµ

Which in turn allows us to write
/D

2 = D2
µ + e

2
Fµνσ

µν

where σµν = i
2[γµ, γν]. The second term, coupling Fµν to σµν is where the magnetic moment

comes from, the Lorentz generators in the (Dirac) spinor representation are given by Sµν = 1
2σ
µν ,

this term then expresses the fact that the magnetic field couples to rotations in spinor space,

this is exactly what an intrinsic magnetic moment does.

To be explicit, we can then use the expression above into ( /D2 + m2)ψ = 0, and find, after some
manipulation

(H − eA0)2

2m
=
[
m

2
+ (~p− e ~A)2

2m
− 2

e

2m
~B · ~S ± i ~E · ~S

]
ψ

Indeed, we find that g = 2 exactly. But notice that if loops contribute with terms proportional to
Fµνσ

µν , then renormalization of our theory will give new contributions to g.

Now, corrections to the g − 2 are really corrections to how photons interact with spinors, and
hence, we need to look, in general, at off-shell S-matrix elements involving two spinors and
a photon. In this particular case however, because we are particularly interested in muons in

experiments, the two spinors are really just an incoming muon and one outgoing muon, which

we allow to be on-shell. We are then interested in amplitudes of the form

iMµ =

µ− µ−

γ

q1 q2

p

There is, however, a strong restriction on what this amplitude can depend on. Due to Lorentz

covariance, it can, in its most general form be given by

iMµ = ū(q2)
(
aγµ + bpµ + cq

µ
1 + dq

µ
2
)
u(q1)

Hence, through manipulations of these terms, using the on-shell condition for the muons and

Ward identities, one can arrive at a completely general expression for the form of this amplitude

iMµ = (−ie)ū(q2)
[
F1

(
p2

m2

)
γµ + iσµν

2m
pνF2

(
p2

m2

)]
u(q1) (2)

The F2 term has precisely the form we are looking for. The momentum becomes a derivative in
position space which will (after some algebra), generate the Fµν term. Now, since the original
value, at tree level, of g was 2, and because measurements of g are done at non-relativistic
energies (where p2/m2 → 0), we can write

g − 2 = 2F2(0) (3)

Notice how at tree-level, the contribution to the amplitude is the known −ieū(q2)γµu(q1), which
comparing to (2), gives F1 = 1 and F2 = 0, recovering g = 2.
Now, we must consider loops. At 1-loop, thankfully there’s only one diagram that will contribute

with non-zero F2, which is the following

µ− µ−

γ

= −e3ū(q2)
∫

d4k
(2π4)

γν(/p + /k +m)γµ(/k +m)γν[
(k − q1)2 + iε

][
(p + k)2 + iε

][
k2 −m2 + iε

]u(q1)

One can then show, that this will yield [2]

F2(p2) = α

π
m2

∫ 1

0
dx dy dz δ(x + y + z − 1) z(1 − z)

(1 − z)2m2 − xyp2 ⇒ F2(0) = α

2π

where α = e2/4π

The QED correction

With this result, we can then find using (3), the beautiful 1-loop correction to the g− 2 due to
QED

(g − 2)QED = α

π
(4)

Crucially, this correction does not differentiate between electrons and muons (or taus for that

matter), there is no mass dependency, this only depends on their electric charge, which is the

same for the three charged leptons.

Onwards to Supersymmetry

Supersymmetry is a candidate extension to the Standard Model. Strictly speaking we’re really

extending the traditional Poincaré Algebra upon which the Standard Model is built, into a Super-

Poincaré Algebra, but let’s not go that far. Forwhat we’re interested in, it’s enough to understand

that the SUSY QED sector (we’re ignoring the tau for simplicity) adds three new particles, part-

ners, to every pre-existing particle. The electron gets a scalar partner, the selectron (ẽ), the muon,
a scalar smuon (µ̃), and the photon, a fermionic photino (Ã). The new Lagrangian, now adopting
λ as the electric charge so as to avoid confusion, then becomes [2]

LSUSY = LQED + (∂µẽ + iλAµẽ)?(∂µẽ + iλAµẽ) +m2
ẽ|ẽ|

2 + λẽēÃ + λẽ? ¯̃Ae
+(∂µµ̃ + iλAµµ̃)?(∂µµ̃ + iλAµµ̃) +m2

µ̃|µ̃|2 + λµ̃µ̄Ã + λµ̃? ¯̃Aµ + Ã(/∂ +mÃ)Ã

This might look intimidating, but for our purposes it isn’t. For the muon g− 2, this only adds one
new process at 1-loop, which is completely analogous to the previous one, but where the virtual

particles are now smuons and photinos

µ− µ−

γ

=
∫

d4k
(2π4)

−λ3ū(q2)(2kµ + pµ)u(q1)
[(k − q1)2 −m2

Ã
+ iε][(p + k)2 −m2

µ̃ + iε][k2 −m2
µ̃ + iε]

This can be evaluated to find F2, but the result is not quite as nice as in standard QED, we find

F2(0) = α

2π
mµ

∫ 1

0
dz

(1 − z)
[
z(1 − z)mµ +mÃz

]
(1 − z)(m2

µ̃ −m2
µ) − (z − 1)2m2

µ + zm2
Ã

The supersymmetry correction

With this result have now found the SUSY QED correction to the g − 2, it is

(g − 2)SUSY = α

π

∫ 1

0
dz

mµ(1 − z)
[
z(1 − z)mµ +mÃz

]
(1 − z)(m2

µ̃ −m2
µ) − (z − 1)2m2

µ + zm2
Ã

(5)

Crucially, there is one key difference with this result, it is sensitive to the mass of the muon, if

we had done the same calculation with the electron, we would obtain a different correction.

As we shall see, for the regime we’re interested in, the correction is really proportional to the

mass of the muon, and hence, the effects of new physics, in this case, are∼ 200 times stronger
for the muon than they are for the electron.

Effects like this are often very common whenever we have new particles due to Beyond the

Standard Model physics, and hence, this is whywe look at the Muon, we have a better chance

of finding discrepancies should they exist

Estimating the SUSY scale

Now imagine we make a supposition, that the difference between the experimental value of the

muon g−2, and the theoretical value due to the full StandardModel (there are other contributions
due to the weak sector and QCD sector that were not covered here), can be accounted by the

supersymmetry correction obtained. This analysis is not simple if we use the full form given in

(5), thanfully, we don’t have to. Using that SUSY must be broken, we don’t see supersymmetric

partners in our daily lives, and as such we must take mµ � mÃ ∼ mµ̃ ≡ mSUSY, we find that (5)
becomes

(g − 2)SUSY =
αmµ

6πmSUSY

Now under the supposition made, this should account for the difference between gexp and gSM.
Defining then the difference between theory and experiment, ∆g = gexp− gSM, in order for our
hypothesis to be justified, we must have

mSUSY >
αmµ

6π∆g

Using recent values, obtained from FermiLab, as well as the most recent full Standard Model

calculation to find ∆g, we find a lower bound for the SUSY scale at ∼ 8TeV
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