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The matter’s LEGO©

From the ancient Greece and India philosophers until John Dalton’s theory about the matter and the

modern atom model, the humanity always sought for the answer to the primordial question: what are

we made of? The world atom comes from the greek analogous ἄτομος, “indivisible”, as that is what

we think they were at the time of their discovery, and are the most abundant constituents of matter.

They are made of parts, given by a nucleus (made by protons and neutrons, which in turn, are hadrons)

encircled by the electron cloud, and are classified by their number of protons.

Figure 1. The Standard Model of Particle Physics,

with the three fermion generations and the scalar

and gauge bosons.

Latterly, with the development of the quantum me-

chanics, we have a better understanding about them,

and it’s definitely not that simple. Protons and neu-

trons are not the final stage, they are not the funda-

mental particles, but are made of them. Quarks (with

their six flavors), gluons, the electron cousins, muon and

tau, bosons W± and Z0... there is an entire “Particle
Zoo” popularized by R. Oppenheimer and others parti-

cle physicists who lived during that golden age.

We finally formulated in the 70s, trying to unify Quan-

tum Mechanics and the Relativity Theory of A. Ein-

stein, the Standard Model of particle physics, dividing

the matter in two groups, one of them named bosons,

which follow the Bose-Einstein statistics and mediate

the fundamental forces between the matter, made of

fermions, which follow the Fermi-Dirac statistics.

Nowadays, we still have some open questions in this

model, like the CP (charge conjugation parity symmetry)

violation and the asymmetry between matter and anti-

matter, the nature of the dark energy and dark matter

and the existence of supersymmetric particles partners.

Most of these questions may be answered in the next decades, with the development of new tech-

nologies that can provide us enough data which we will use to validate these theories that are beyond

the standard model.

QuantumMechanics Rules

The mathematical formulation of quantum mechanics can be briefly described by four postulates,

which have shown very useful and unbreakable until today:

A quantum mechanical state can be fully described by a state vector |ψ〉, called ket, who lives in
a state vector spaceH , called Hilbert space, implying in a linear algebra mathematical

formulation.

All the physical observables can be described by an operator Ô, which acts on those kets,
immediately changing or not them (eigenstate are not changed under this action).

A measurement can be represented by the action of an operator on one state vector, it will

return one of its eigenvalues, with a certain probability, and change the state to the respectively

eigenstate.

A quantum system evolves in time can be described by the famous Schrödinger Equation, which

is generally statemented by

i~
∂

∂t
ψ(r, t) = Ĥψ(r, t),

and ψ(r, t) represents the state vector projected on the position orthonormal basis.

“Relative” Theory

A large set of physicist and mathematicians from the 20th century was responsible for the formulation

of how the space-time and the matter (energy) interact themselves, postulating and formulating fun-

damental laws that govern these interactions, like the speed limit imposed by the nature: the speed

of light in the vacuum c. After Galileo’s space-time, given by (R3, δµν), and his principle of relativity,
which says that different inertial observers can measure the same observables (implying in a privileged

observer), the Minkowski space-time consists in a four-dimensional smooth manifold aimed with the

analogous named metric, (R1,3, ηµν), where we have three spacial dimensions and one guided by the
time (”space-time”), and a point at this space is called an event, (t, x, y, z), and a sequence of events
infinitesimally connected evolving in time is an worldline.

Figure 2. The light cone, a surface constructed by the

pseudo-distance (1) in Minkowski space-time.

At this manifold, we have a group of transformations

known as Poincarè’s Group, a semi-direct product be-

tween the group of translations and Lorentz Group,

P = SO(3, 1) � T 3,1, where the last consists in Lorentz
transformations, very important to relativistic change of

inertial frame and create phenomena like time dilation

and length contraction.

As vectors transform under rotations and preserve their

modules, we have four-vectors, which transform un-

der Lorentz transformations and preserve theirmodules

(using that newmetric), like the important four-gradient

∂µ = (∂t,∇). Lorentz boosts preserve the spacetime in-
terval between two events, a scalar product given by

ds2 = ηαβdx
αdxβ (1)

= ±c2(t2 − t1)2 ∓ (x2 − x1)
∓ (y2 − y1) ∓ (z2 − z1) = ds′2

due the metric signature (±,∓,∓,∓), which if null, matches with the equation of a surface known as
the light cone, a three-dimensional cone hyper-surface,

Given a event’s light cone (where it is at the origin), we can have three types of spacetime intervals ds,
and each one can naturally give us some relations between the events (for + − −−):

space-like, given by ds < 0, when the other event is outside the observable’s light cone,
and light-like, referring to ds = 0, so events like this lies on the light cone,
time-like, when ds > 0, establishing the idea of causality connected events,

where the term causality emerges from the idea of which point can affect another, so, if two points

are not causality connected, they will never affect each other.

Introducing Fields

A field can be described as a mathematical function entity that returns quantities of different natures,

as scalars, vectors, tensors, etc, and in our case, they permeate all space-time, mapping one of these

entities for each event. The temperature in a room can be given as a number to each point of this

little space, while the electromagnetic field created by an electron needs not only a module but also a

direction which it points at space.

Fields are extremely important for the description of our universe, and they appear naturally when

you try to describe a system with a huge (going to infinity) number of degrees of freedom: taking N
coupled harmonic oscillators going to infinity and using the classical mechanical formalism, we can

define a Lagrangian L and Hamiltonian H densities, which we can use to get the equations of motion

of our continuous system, and still have the quantity named Action that now can be given by

S =
∫

d4xL(φ, ∂µφ),

which by the Principle of Least Action, always tends to be extremized, what means δS = 0.
Evaluating a tiny variation δφ → φ+ δφ on our field, keeping the lagrangian unchanged so that it has a
symmetry, we can get that

δS =
∫

d4x

{[
∂L
∂φ

− ∂µ
∂L

∂(∂µφ)

]
δφ− ∂µ

[
∂L

∂(∂µφ)
δφ

]}
= 0,

implying that when the principle applies, and so we are dealing with a real physical system, there is a

conserved Noether current and its charge, which are given by

Jµ = ∂L
∂(∂µφ)

δφ , Q =
∫

d3x J0,

respectively. Some of themost canonical conserved currents and its charges are the Enery-Momentum

Tensor T
µ
ν conserving the energy density (Hamiltonian H) and the Total Angular Momentum Tensor,

a sum of Orbital and Spin, J µ
νρ = Mµ

νρ + Sµνρ , conserving spin and angular momentum.

Gotta Quantize ’Em All

Now, we must try to establish a connection between this posterior quantum and the classical me-

chanics, besides to get the same results when approaching to the classical limit. At a first quantization

approach try, we can take one of those harmonic oscillators which we already know the well-defined

solutions x(t) = C1eiωt + C2e−iωt and Hamiltonian

H = p2

2m
+ 1

2
mω2x2,

and promote the position and momentum observables to quantum operators (just like every observ-

able), imposing the canonical commutation relation [x̂, p̂] = i~; also changing the main variables and
getting a new set of powerful tools given by

â =
√
mω

2

(
x̂ + ip̂

mω

)
, â† =

√
mω

2

(
x̂− ip̂

mω

)
, [a†, a] = 1 , H = ~ω

(
a†a + 1

2

)
,

we now have the number operator N̂ = â†â which give us the discrete energy levels modes of the
system given by E = ~ω, interpreted as the particle’s energy level.

At a second try we take the simplest Lorentz-invariant field’s equation of motion, �φ = 0, and take its
most general plane waves solutions

φ(x, t) = 1
(2π)3

∫
d3p

(
ape

−ipµxµ + a∗
pe
ipµxµ

)
and, as the first try, introduce to each p a creation â† and annihilation â operators, which over all
wavenumbers results in

H = 1
(2π)3

∫
d3p ωp

(
â

†
pâp + 1

2

)
,

which talks about the number of particles (interpreted as excitations) of each E = ~ω mode. Now,
if we consider the commutator for equal times [ap, a†

k
] = (2π)3 · δ3(p − k) and know how a

†
p acts on

moment states |p〉, we can finally describe quantum fields as operators, defined by integrals over the
creation and annihilation operators for each wavenumber over the Fock space F = ⊕nHn,

φ0(x) = 1
(2π)3

∫
d3p√
2ωp

(
a

†
p e

−ipx + ap e
ipx

)
,

which can be interpreted, for example, by the action on the vacuum state that creates a particle at x,
φ0(x) |0〉 = |x〉, and now, we have a simple quantum description of the field theory.

Conclusions and Expectations

For the next months, I plan to deepen my knowledge in more requirements of particle physics, in-

troducing myself to groups theory and more fundamental concepts about quantum mechanics, as

perturbation and scattering theories, while following a guided reading of quantum theory field books

as Schwartz[3] and Peskin[2].
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