Theory predictions for charmed meson production in fixed-target experiments at the LHC and connections with astrophysical applications

Maria Vittoria Garzelli

in collaboration with

S. Alekhin, W. Bai, M. Benzke, M. Diwan, Y. S. Jeong, B. Kniehl, S.-O. Moch, M.-H. Reno, G. Sigl and PROSA collaboration

Hamburg Universität, II Institut für Theoretische Physik

Fixed target experiments at LHC - strong2020 workshop Centre Paul Langevin, Aussois, 5 - 7 January, 2023

Light flavour vs. heavy flavour

 \ast Light-flavoured hadrons include only light quarks as valence quarks in their composition.

```
* m_u, m_d, m_s << \Lambda_{QCD}

\Rightarrow \alpha_S(m_u), \alpha_S(m_d), \alpha_S(m_s) > 1
```

- \Rightarrow Light hadron production at low p_T is dominated by non-perturbative QCD effects.
- * Heavy-flavoured hadrons include at least one heavy-quark as valence quark in their composition.

```
* m_c, m_b >> \Lambda_{QCD}

\Rightarrow \alpha_s(m_c), \alpha_s(m_b), << 1
```

 \Rightarrow At a scale $\sim m_Q$, QCD is still perturbative. At the LHC, charm is produced perturbatively (if one neglects possible intrinsic charm contributions) even at low p_T , but non-perturbative effects at such low scales may also play important roles.

- * m_c , $m_b << LHC$ energies
- ⇒ Multiscale issues, appearence of large logs.

Heavy-quark production in hadronic collisions

- * Heavy quarks are mostly produced in pairs in the Standard Model.
- * This process is dominated by QCD effects.
- * Collinear factorization theorem is assumed:

$$\begin{array}{c} d\sigma(\textit{N}_{1}\textit{N}_{2} \rightarrow \textit{Q}\,\bar{\textit{Q}} + \textit{X}) = \sum_{ab} \textit{PDF}_{a}^{\textit{N}_{1}}(\textit{x}_{a}, \mu_{\textit{F}}) \textit{PDF}_{b}^{\textit{N}_{2}}(\textit{x}_{b}, \mu_{\textit{F}}) \otimes \\ \otimes \ d\hat{\sigma}_{ab \rightarrow \textit{Q}\,\bar{\textit{Q}}\,\textit{X}'}(\textit{x}_{a}, \textit{x}_{b}, \mu_{\textit{F}}, \mu_{\textit{R}}, m_{\textit{Q}}) \end{array}$$

 $d\hat{\sigma}$: differential perturbative partonic hard-scattering cross-section,

 μ_F , μ_R reabsorb IR and UV divergences,

PDFs: perturbative evolution with factorization scale μ_F , non-perturbative dependence on $x = p^+/P_N^+$.

QCD uncertainties

- * μ_F and μ_R choice: no univocal recipe.
- * Approximate knowledge of heavy-quark mass values m_Q (SM input parameters).
- * Choice of the Flavour Number Scheme (several possibilities).
- * PDF $(+ \alpha_S(M_Z))$ fits to experimental data.

Total $\sigma(pp \to c\bar{c}(+X))$ at LO, NLO, NNLO QCD


```
(E_{lab} \simeq 400 \; {
m GeV} \sim E_{cm} = 27 \; {
m GeV})

(E_{lab} \simeq 7000 \; {
m GeV} \sim E_{cm} = 114.6 \; {
m GeV})

(E_{lab} = 10^6 \; {
m GeV} \sim E_{cm} = 1.37 \; {
m TeV})

(E_{lab} = 10^8 \; {
m GeV} \sim E_{cm} = 13.7 \; {
m TeV})

(E_{lab} = 10^{10} \; {
m GeV} \sim E_{cm} = 137 \; {
m TeV})
```

data from fixed target exp (E769, LEBC-EHS, LEBC-MPS, HERA-B) + colliders (STAR, PHENIX, ALICE, ATLAS, LHCb) are extrapolated from fiducial measurements.

- * LHC fixed-target program make measurements in the region between old fixed-target experiments and RHIC (not yet covered).
- * Sizable QCD uncertainty bands not included in the figure.
- * Leading order is not accurate enough for this process!

From parton production at NLO to heavy-flavour hadrons

Different descriptions of the transition are possible:

1) <u>fixed-order QCD + Parton Shower + hadronization</u>: match the fixed-order calculation with a parton-shower algorithm (resummation of part of the logarithms related to soft and collinear emissions on top of the hard-scattering process), followed by hadronization (phenomenological model).

Advantage: fully exclusive event generation, correlations between final state particles/hadrons are kept.

Problem: accuracy not exactly known, differently from the case of conventional analytical resummation procedures to all orders in P. T.

2) Convolution of partonic cross-sections with Fragmentation Functions (see the following).

Both methods 1) and 2) are used, with compatible results.

NLO+PS differential σ vs experimental data

for differential cross-sections for $pp \rightarrow D^{\pm} + X$ at LHCb at 5 TeV

- * agreement theory/experiment within large (μ_R, μ_F) uncertainty bands.
- * theory uncertainties much larger than the experimental ones.

Adding data from other experiments

* LHCb open-charm data

- * ATLAS (and CMS) open-charm data (|y| < 2.5)
- * CDF open-charm data (|y| < 1)
- * ALICE open-charm data (|v| < 0.5)
- + further open-bottom data

Different experiments span (Q^2, x) regions partially overlapping: good for verifying their compatibility and for cross-checking their theoretical description.

Description of similar quality for all these data so far.

These data are very useful for constraining gluon PDFs at small x: see e.g. various versions of PROSA PDFs and NNPDF+LHCb PDFs.

gluon PDF: comparison between different PDF fits including LHCb *D*-meson production data

- * LHCb D-meson data (collider modality) constrain PDFs at small x.
- * Compatibility of indipendent PDF fits including *D*-meson data: PROSA central gluon lies in the interval between central NNPDF3.1+LHCb NLO and NNPDF3.1+LHCb NLO+(small-x)NLL.

gluon PDF: global comparison

 $10^{-5} < x < 0.5$ - uncertainties on each set not plotted

gluon PDF: global comparison of PDFs with $\alpha_S(M_Z) = 0.118$

* Central PDFs exhibits several ten percent differences at $x \sim 0.5$

Fixed-target experiments at the LHC: increased large x

coverage and sensitivity to nuclear matter effects

from K. Mattioli (LHCb), talk at QCD@LHC, December 2022

- * LHCb-FT coverage: $2\cdot 10^{-4}\lesssim x\lesssim 4\cdot 10^{-1}\Rightarrow$ gluon, sea quarks and intrinsic charm
- * Light targets: probe NM effects in pA collisions in A range different from Pb
- * Cold and Hot Nuclear Matter effects (at small x) can be compared by using p or Pb beams impinging on the nuclear targets (He, Ne, Ar,).

Fixed-target experiments at the LHC: y* coverage

- * LHCb SMOG (Run 2): heavy-flavour center-of-mass rapidity $-2.29 < y^* < 0$ corresponding to rapidity 2.0 < y < 4.29
- * LHCb SMOG2 (Run 3): -2.8 < y* < 0.2
- * ALICE FT extension (Run 4): $-3.6 < y^* < -2.6$

from FTP4LHC community support for FT program at LHC

- * Different experiments span y^* regions partially overlapping: good for verifying their compatibility and for cross-checking their results.
- * But different materials:
- H₂, D₂, Ar, Kr, Xe, He, Ne, N₂, O₂ (SMOG2) vs. C, Ti, W (ALICE-FT)
- * ALICE more backward than LHCb \Rightarrow larger projectile x
- * Most recent results on D^0 production at $\sqrt{s_{NN}} = 68.5$ GeV from LHCb

[arXiv:1810.07907]

* Total cross-sections per nucleon for $D_0+\bar{D}_0$ after LHCb rapidity cuts: Theory: $\sigma=76.1+116$ (scale) - 35 (scale) microbarn/n LHCb: $\sigma=80.8\pm2.4\pm6.3$ microbarn/n

* Total cross-sections per nucleon for $D_0 + \bar{D}_0$ inclusive:

Theory: $\sigma = 148.7 + 229$ (scale) - 83 (scale) microbarn/n

LHCb: $\sigma = 156.0 \pm 13 \text{ microbarn/n}$

- * pA effects might broaden the distribution
- * pp central theory predictions slightly underestimate the high p_T tails, but still compatible with data considering scale uncertainties

* exp. (p+He) and (p+Ar) data similarly enhanced with respect to theory at large p_T : final state effects ?

PROSA NLO+PS computation of \mathcal{D}^0 -meson production w.r.t. LHCb fixed-target data on pHe and pAr

- * Big scale uncertainties, especially at large y
- * Before discussing intrinsic charm, one has to disentangle *pA* effects: they can impact on the shapes of the distributions.

[arXiv:2211.11633]

* Total cross-sections per nucleon for $D_0 + \bar{D}_0$ after LHCb rapidity cuts:

```
Theory: \sigma = 53 + 81 (scale) - 24 (scale) microbarn/n
LHCb: \sigma = 48.2 \pm 0.3 \pm 4.3 \text{ microbarn/n}
```

* Total cross-sections per nucleon for $D_0 + \bar{D}_0$ inclusive:

```
Theory: \sigma = 109 + 167 (scale) - 50 (scale) microbarn/n
```

LHCb: $\sigma = 97.6 \pm 0.7 \pm 9.1 \text{ microbarn/n}$

- * pA effects might broaden the distribution
- * pp central theory predictions slightly underestimate the high p_T tails, but still compatible with data considering scale uncertainties.
- * No need for IC to explain the high p_T tail.

- * pp central theory predictions slightly overestimate the high y tails, but still compatible with data considering scale uncertainties.
- * No need for IC to explain this distribution as well.

- * $D^0 \bar{D}^0$ pruduction asymmetry as a function of p_T from pp predictions compatible with data, considering uncertainty on the latter.
- * Most theory uncertainties cancel in ratios.
- * Reduction in data uncorrelated (systematical + statistical) uncertainty is needed for more conclusive remarks.

- * $D^0 \bar{D}^0$ pruduction asymmetry as a function of y from pp predictions compatible with data only for central rapidity $(-1 < y^* < 0)$, considering uncertainty on the latter.
- * for $-2.5 < y^* < -1$, theory predictions not compatible with data.
- * Theory predictions lead to a very negative asymmetry only at rapidities y < -3 (effect of recombination with p remnant: $\bar{D}^0 = \bar{c}u$).

PROSA NLO+PS computation of D^0 -meson production in fixed-target experiments at HL-LHC

* Total cross-sections per nucleon for $D_0 + \bar{D}_0$ after LHCb-SMOG2 rapidity cuts:

Theory:
$$\sigma = 114 + 186$$
 (scale) - 52 (scale) microbarn/n

* Total cross-sections per nucleon for $D_0 + \bar{D}_0$ after ALICE-FT rapidity cuts:

Theory:
$$\sigma = 3.1 + 5.3$$
 (scale) - 1.5 (scale) microbarn/n

* Total cc̄ cross-section - no cuts :

Theory:
$$\sigma = 187 + 288$$
 (scale) - 86 (scale) microbarn/n

Performances of the PROSA QCD computation of *D*-meson production w.r.t. LEBC-EHS exp. data

Fixed target experiment with $E_{p,lab} = 400 \text{ GeV}$.

- * Measure relatively large $x_F = p_{z,D}/p_{z,D}^{max}$ (up to $x_F \sim 0.6$) and p_T^2 .
- * Sizable QCD uncertainty band not included in the plot.

Performances of the PROSA QCD computation of *D*-meson production w.r.t. LEBC-MPS exp. data

- * Fixed target experiment with $E_{lab} = 800 \text{ GeV}$.
- * Measure relatively large x_F (up to $x_F \sim 0.4$).
- * Sizable QCD uncertainty band not included in the plot.

Why reducing theory and experimental uncertainties on open heavy-flavour hadroproduction in fixed-target experiments matters?

- * Constraints of PDFs at large x's, which in turns is relevant for
 - constraining BSM, already in the LHC era:
 - present and future far-forward LHC experiments: Faserν, SND@LHC, FPF, etc.....
 - future high-energy colliders: FCC-hh, etc.....
- * high-energy astroparticle physics applications:
 - High Energy Cosmic Ray physics and prompt neutrino fluxes
- * disentangling cold and hot nuclear matter effects (in pA and AA collisions).
- * various other applications not discussed in this talk: see the document "Community Support for A Fixed-Target Programme for the LHC"

Atmospheric neutrino fluxes

CR + Air interactions:

- AA' interaction approximated as A NA' interactions (superposition);
- NA' approximated as A' NN interactions: up to which extent is this valid?
 - * conventional neutrino flux:

* prompt neutrino flux:

 $NN o c, b, \bar{c}, \bar{b} + X o heavy-hadron + X' o
u(\bar{\nu}) + X'' + X'$ where the decay to neutrino occurs through semileptonic and leptonic decays:

$$\begin{array}{ll} D^+ \to e^+ \nu_e \mathsf{X}, & D^+ \to \mu^+ \nu_\mu \mathsf{X}, \\ D^\pm_s \to \nu_\tau (\bar{\nu}_\tau) + \tau^\pm, & \text{with further decay } \tau^\pm \to \nu_\tau (\bar{\nu}_\tau) + \mathsf{X} \end{array}$$

proper decay lenghts: $c au_{0,\,\pi^\pm}=780$ cm, $c au_{0,\,K^\pm}=371$ cm, $c au_{0,\,D^\pm}=0.031$ cm

Critical energy $\epsilon_h = m_h c^2 h_0 / (c \tau_{0,h} \cos(\theta))$, above which hadron **decay** probability is suppressed with respect to its **interaction** probability:

 $\epsilon_\pi^\pm < \epsilon_K^\pm << \epsilon_D \Rightarrow$ conventional flux is suppressed with respect to prompt one, for energies high enough, due to finite atmosphere height h_0 .

How to get atmospheric fluxes? From cascade equations to *Z*-moments [review in Gaisser, 1990; Lipari, 1993]

Solve a system of coupled differential equations regulating particle evolution in the atmosphere (interaction/decay/(re)generation):

$$\frac{d\phi_{j}(E_{j},X)}{dX} = -\frac{\phi_{j}(E_{j},X)}{\lambda_{j,int}(E_{j})} - \frac{\phi_{j}(E_{j},X)}{\lambda_{j,dec}(E_{j})} + \sum_{k \neq j} S_{prod}^{k \rightarrow j}(E_{j},X) + \sum_{k \neq j} S_{decay}^{k \rightarrow j}(E_{j},X) + S_{reg}^{j \rightarrow j}(E_{j},X)$$

Under assumption that X dependence of fluxes factorizes from E dependence, analytical approximated solutions in terms of Z-moments:

- Particle Production:

$$S_{prod}^{k \to j}(E_j, X) = \int_{E_j}^{\infty} dE_k \frac{\phi_k(E_k, X)}{\lambda_k(E_k)} \frac{1}{\sigma_k} \frac{d\sigma_{k \to j}(E_k, E_j)}{dE_j} \sim \frac{\phi_k(E_j, X)}{\lambda_k(E_j)} Z_{kj}(E_j)$$

Particle Decay:

$$S_{decay}^{j\rightarrow l}(E_l,X) = \int_{E_l}^{\infty} dE_j \frac{\phi_j(E_j,X)}{\lambda_j(E_j)} \frac{1}{\Gamma_j} \frac{d\Gamma_{j\rightarrow l}(E_j,E_l)}{dE_l} \sim \frac{\phi_j(E_l,X)}{\lambda_j(E_l)} Z_{jl}(E_l)$$

Solutions for $E_i >> E_{crit,j}$ and for $E_i << E_{crit,j}$, respectively, are interpolated geometrically.

Z-moments and large-x **PDFs effects**

* Differences in gluon PDFs at large x are not covered by the uncertainties associated to each single PDF set.

* They translate directly in differences in the $d\sigma/dx_E$ distributions, where $x_E = E_{D,lab}/E_{p,lab}$, fundamental ingredient of the Z-moments used in the computation of prompt neutrino fluxes.

Prompt ν fluxes and large-x PDFs

from V. Goncalves et al. [arXiv:1708.03775]

- * A robust estimate of large x effects is important for determining the normalization of prompt neutrino fluxes
- * Region particularly relevant: 0.2 < x < 0.8, partly testable through FT experiments at the LHC.

Prompt ν fluxes and IceCube upper limits

from O. Zenaiev et al. [arXiv:1911.13164]

- \ast IceCube has constrained the normalization of prompt neutrino fluxes through an upper limit.
- * Intrinsic charm already constrained by this limit as well, at least at low energy/not so large rapidities.....

$(Z+j_c)/(Z+j)$ and (intrinsic) charm PDFs

from LHCb collaboration, [arXiv:2109.08084]

- * Significant enhancement of the experimental data in the largest rapidity bin, compatible with a non-negligible IC component.
- The atmosphere is a well suitable environment to look for intrinsic charm. This will simply lead to enhanced ν fluxes at large energies.

$(\nu_{\mu} + \bar{\nu}_{\mu})$ fluxes: cold nuclear matter effects

- * Predictions using nuclear PDFs within scale uncertainty bands of those with proton PDFs and superposition model.
- * Suppression of prompt fluxes due to CNM effects? Large shadowing effects do not emerge for all nuclear PDF fits, especially for low-mass nuclei

Conclusions

- * LHC fixed-target program has produced first high-quality data on D^0 production, exploring a $\sqrt{s_{NN}}$ region in between old fixed-target experiments and RHIC.
- * LHCb has produced first high-quality data, but reduction of statistical and especially systematical uncertainties is important for using them for making strong conclusions.
- * No evident need for intrinsic charm to explain present data, but *pA* effects have also to be understood.
- * Data on $(D^0 \bar{D}^0)$ asymmetries particularly interesting. Asymmetry as a function of y can be used to constrain soft physics (fragmentation including recombination with beam remnants) in SMC codes.
- * Important to add ALICE-FT experiment for enlarging y and A coverage and for cross-checking LHCb-FT results.
- * Is it possible to report separate data for both D^0 and \bar{D}^0 ?
- * Is it possible to measure different observables (e.g. x_F)?