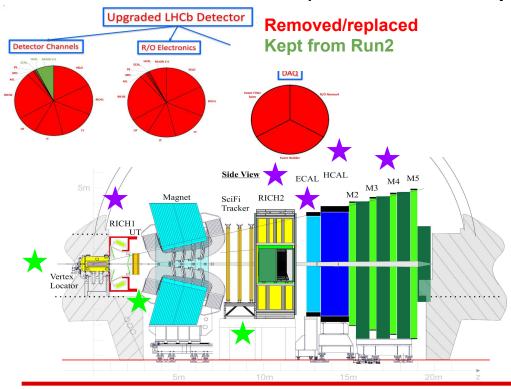


Status of the SMOG2 system at LHCb

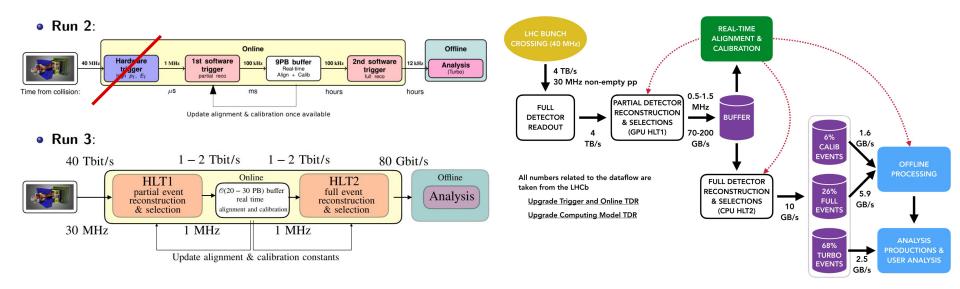

Saverio Mariani CERN On behalf of the SMOG team, but with the contributions of many Outline

- Introduction to the SMOG2 project
- SMOG2 commissioning and first results
- Plans and prospects for the 2023 data-taking

STRONG 2020 workshop, 06/01/2023

LHCb Upgrade in a nutshell (I)

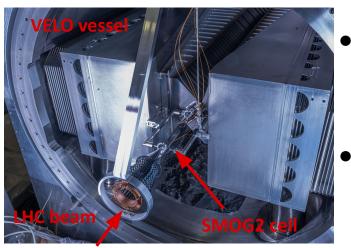
• In view of the LHC Run3, most electronics/optics/DAQ channel and the entire tracking system have been replaced or removed


- De facto, a new experiment is running at the LHC:
 - Tracking system with pixel VELO detector + UT silicon tracking station + scintillating fibers (SciFi) tracker
 - PID from two **RICH detectors +** calorimeters + Muon stations
- 2022 is a commissioning year...

Saverio Mariani

LHCb Upgrade in a nutshell (II)

- Hardware trigger removed. Full detector read-out, calibration and alignment and event reconstruction and selection **in real time and only via software**
- First trigger level completely running on GPUs, a novelty in large experiments


LHCb-TDR-017, LHCb-TDR-021, Comp Softw Big Sci 4, 7

Saverio Mariani

Past and present fixed-target LHCb

[See talk by C.Lucarelli]

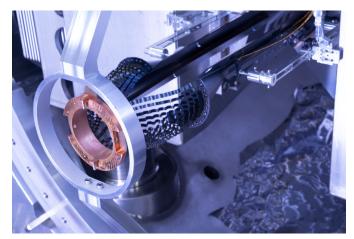
- Since 2015, LHCb has collected beam-gas data as **the highest-energy fixed-target experiment ever** by injecting inject noble gases in the LHC beam-pipe through SMOG
- Gas was free to spread in ±20 m from the nominal IP, which limited
 - the pressure and species of injectable gases (He, Ar, Ne with O(10^{-7}) mbar)
 - the possibility to **simultaneously acquire data with** *pp* for all LHC bunches

[TDR], [physics opportunities]

- Installed a gas storage cell in z E [-541, -341] mm
 - Up to **x100 areal density** for the same flow as in Run2
 - Non-noble gases allowed (H₂, D₂, N₂, O₂) + Kr, Xe
 - Simultaneous data-taking with beam-beam
- A new **gas feed system** with 4 recipients with more precise control of the gas flow (measurable)
 - Address **dominant uncertainty due to luminosity**

Just few examples of the SMOG2 physics prospects

LHCb-PUB-2018-015


A unique laboratory for QCD studies at the LHC!

	SMOG largest sample p–Ne@68 GeV	SMOG2 example p–Ar@115 GeV
Integrated luminosity	$\sim 100 \text{ nb}^{-1}$	100 pb^{-1}
syst. error on J/ψ x-sec.	6-7%	2-3 %
J/ ψ yield	15k	35M
D^0 yield	100k	350M
$\Lambda_{\rm c}$ yield	1k	3.5M
$\psi(2S)$ yield	150	400k
Y(1S) yield	4	15k
Low-mass (5 < $M_{\mu\mu}$ < 9 GeV/ c^2) Drell-Yan yield	5	20k

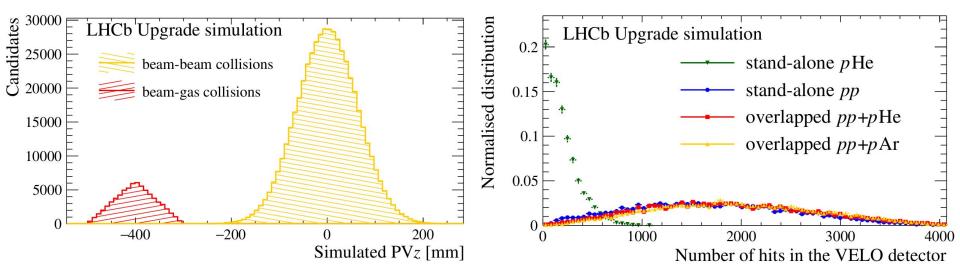
 Pending an exact definition of the data-taking strategy, but the increase in statistics is striking!

- Sequential suppression of charm and bottom states, study of low-mass Drell-Yan
- Detailed study of the high-*x* parton PDFs and probes for TMDs
- High-statistics ultra-peripheral ρ , ω , charmonia and bottomonia states with **high-Z targets**
- Extension of the programme of cosmic rays interest: p̄ production processes with H₂, D₂,
 He, probes for the study of the atmospheric showers with N₂, O₂; nuclei production?

SMOG2 cell and GFS

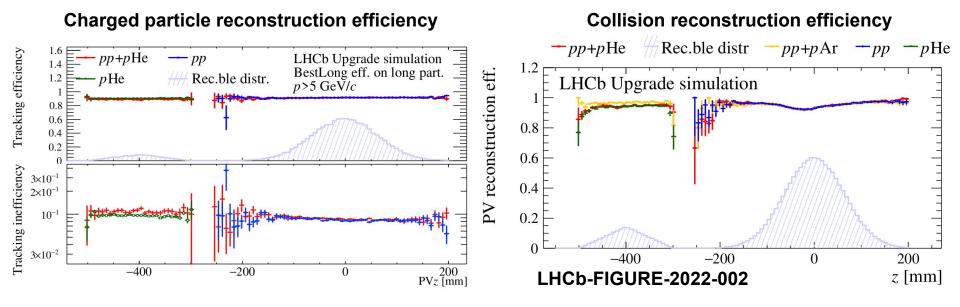
- VELO aperture is lower wrt required one in non-stable beam → VELO opens up outside data-taking
- To cope with it, the cell is also made up of two halves, with one side with a spring to ensure enough flexibility

Offset to nominal			
dXphys [mm]	dYphys [mm]	dZphys [mm]	
-0.25	0.14	0.11	
-0.19	-0.14	0.11	

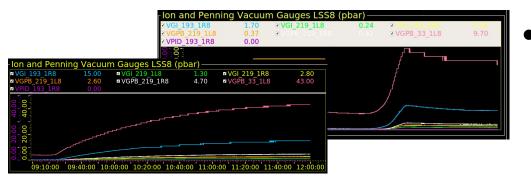

- Aligned to nominal
 position within 250 μm
- Gas injected through a capillary from the cell centre
- Gas feed system (GFS) calibrated at 10⁻⁴ for gas purity and 10⁻² for the flux
- **Temperature measured with 5 probes** with a 0.2 C accuracy

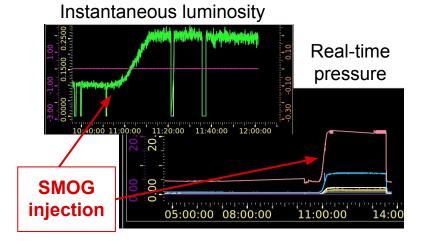
Both cell and GFS installed before the start of the LHC Run3!

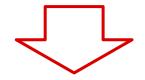
Preparation for simultaneous data-taking


• The SMOG2 displacement wrt the beam-beam interaction region and the small increase in detector multiplicity support a simultaneous beam-beam + beam-gas data acquisition

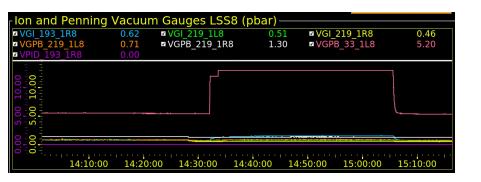
 Intense activity on software event reconstruction before start of LHC Run3, aiming to demonstrate the reconstruction of beam-gas events is efficient <u>Ref</u>


Preparation for simultaneous data-taking (II)


- On simulation, two milestone goals achieved in 2020-2022: Ref
 - Same reconstruction performance for beam-beam and beam-gas collisions
 - By injecting gas on top of the *pp* collisions, **no performance change observed**

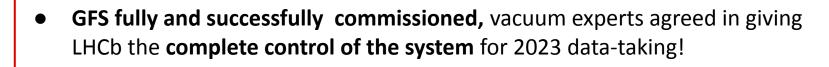

Time to talk about real data?

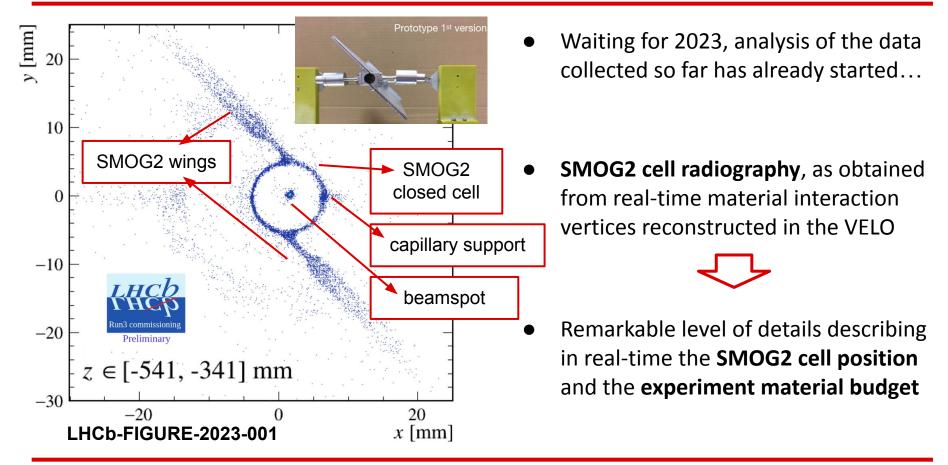
Gas feed system commissioning (I)



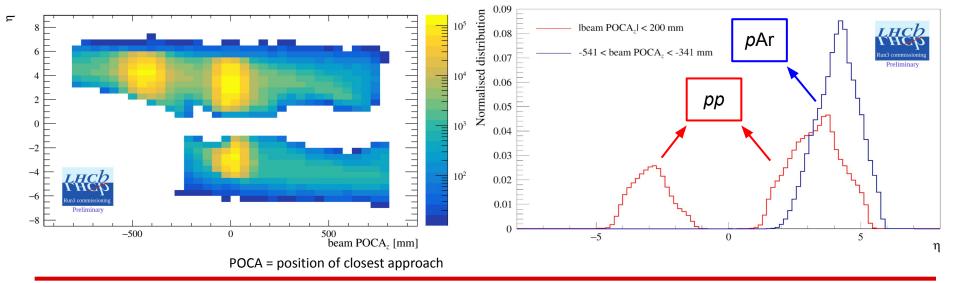
First injections through the open
 SMOG2 cell in June 2022, allowing
 vacuum experts to set the injection
 procedure

 With the low-intensity beams LHC delivered during summer, SMOG2 clearly contributed to increase the detector activity and to speed-up the overall experiment commissioning


Gas feed system commissioning (II)


• 01/11: First injection in the closed cell

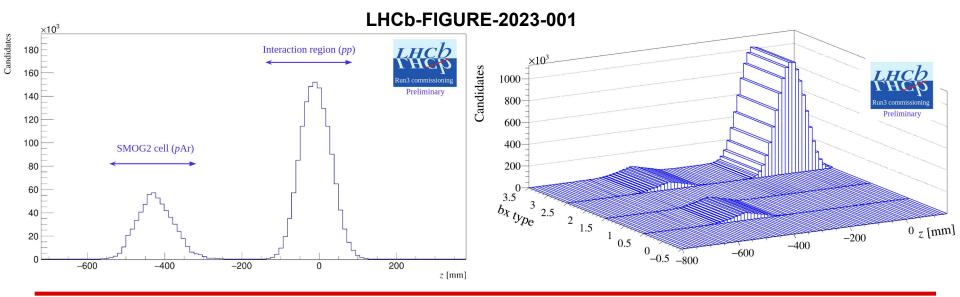
- Very stable pressure plateau and very fast vacuum recovery thanks to the preparatory work by the vacuum team!
- By injecting Ar with a pressure 6.5 times lower wrt Run2, already **achieved a 5.5 higher instantaneous luminosity**!
- Before the end of the 2022 data-taking:
 - Injected He, Ne, Ar and, for the first time ever, H₂
 - Injected gases at **different pressures** both in the VELO vessel and with closed cell



Reconstructing beam-gas collision: the cell

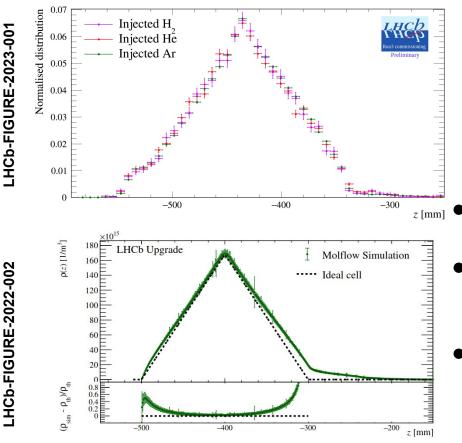
Reconstructing beam-gas collision: particles in the VELO

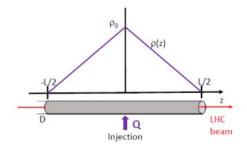
- **Particles reconstructed in the VELO** from *pp* and *p*Ar collisions
- Highly efficient separation between the two components as in simulation observed
- While *pp* collisions are central (same number of forward and backward particles), particles from *p*Ar fixed-target collisions only have positive η values



LHCb-FIGURE-2023-001

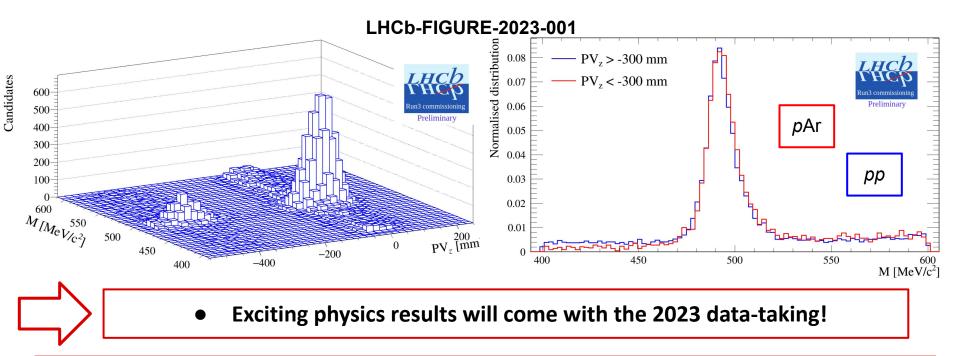
Saverio Mariani


Reconstructing beam-gas collision: PVs (I)


- PVs are reconstructed around *z* = -441 and *z* = 0 mm: **LHCb is the only experiment at the LHC operating simultaneously with two interaction points**
- Beam-gas collisions are reconstructed in both beam-empty (bx type = 1) and beam-beam (bx type = 3) LHC bunch-crossings

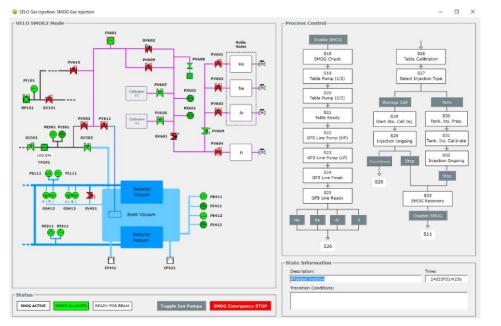
Saverio Mariani

Reconstructing beam-gas collision: PVs (II)



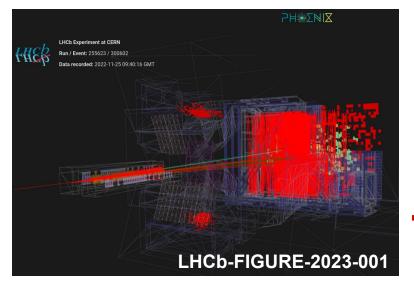
- Being the gas injected at the cell centre,
 beam-gas vertices follow a z triangular profile
 The PVz profile does not depend on the gas
 species, as expected from Molflow
 simulations
- **Full validation** of the simulated profiles with detailed efficiency estimations ongoing

Reconstructing beam-gas collision: composite particles


- Composite particles produced in beam-gas collisions can be reconstructed!
- The mass resolution for Ks produced in *pp* and *p*Ar collisions is the same!

Saverio Mariani

Plans for 2023 data-taking


• **Define a data-taking strategy**, i.e. which gases and how long will be injected, to be discussed within the LHCb collaboration

- Activate the gas feed system control panel, adding some safety protections to interface it with the detector
- Complete the studies on the software reconstruction performance and the trigger selection algorithms implementation

Conclusions

- SMOG2 works ⇒ green light from the vacuum group to get the full control of the injections Gas Feed System is fully calibrated and commissioned:
 - Injected He, Ne, Ar and, for the first time ever, H₂
 - Line pressurisation, gas stability and pump configuration procedures defined

- First performance of the real-time reconstruction shown today: beam-gas particles and collisions can be efficiently reconstructed!
- Looking forward to 2023, aiming to full-physics data-taking and many new results

Thanks for the attention!

saverio.mariani@cern.ch