Open charm production in ALICE-FT

Md Rihan Haque

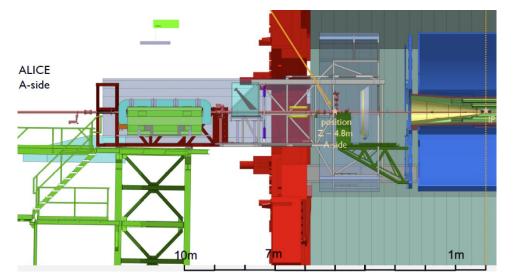
in collaboration with Cynthia Hadjidakis, Laure Massacrier, Daniel Kikola, Barbara Trzeciak

> Fixed Target at LHC, Strong 2020 Workshop, Jan 5-7, 2023

Brief Introduction

Motivations:

- Measurements in large Bjorken-x frontier,
- Variable Target System *e.g.* Be, C, Ti, W.
- Intermediate CM Energy:
 - $\sqrt{s_{NN}}$ = 115 and 72 GeV, with *p* and *Pb* beams.
- Study of Longitudinal expansion of QGP.
- Factorization of CNM effects and more [1].


Setup:

- Channeling proton beam halo with bent crystals [2].
- Compact and retractable solid target system.

Challenges:

- How does TPC respond to inclined tracks
 - (e.g. -2.5 < η < 1.0) ?
- Can we measure Λ , D⁰ from FT Events ?

[1] C. Hadjidakis et. al., Physics Reports, **911**, p1-83 (2021), [2] M. Patecki, HB2021 Beam Dynamics Workshop.

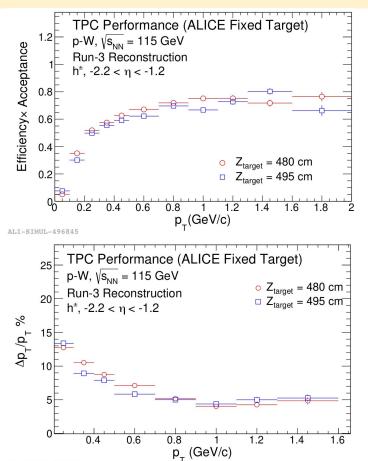
Fig.1: Target position for ALICE Fixed Target Setup

Simulation of ALICE TPC

Charged particles:

- ★ HIJING is used as p-A event Generator.
- ★ TPC response estimated from O2 Simulation with Run-3 detector setup.
- ★ The Efficiency and p_T Resolution are sufficient for analysis.

Caveats:


- → There are unmerged track segments
 - $\rightarrow\,$ To be fixed (later) by TPC experts.
- → The effect of TPC space charge distortions are not taken into account.

Simulation for Λ, D⁰ particles:

- ★ We used Fast Decay simulation (with Root's decayer class).
- The efficiency and p_T resolution of charged particles are used as proxy for decay daughters.

For Details: (Upgrade week Sept 19-23, 2022)

https://indico.cern.ch/event/1183733/contributions/5046904/

Simulation of ALICE TPC

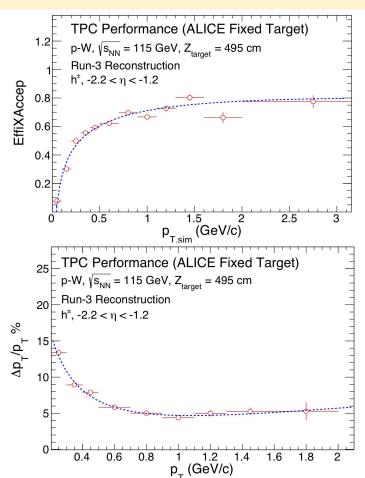
ALICE

Charged particles:

- ★ HIJING is used as p-A event Generator.
- ★ TPC response estimated from O2 Simulation with Run-3 detector setup.
- ★ The Efficiency and p_T Resolution are sufficient for analysis.

Caveats:

- → There are unmerged track segments
 - $\rightarrow\,$ To be fixed (later) by TPC experts.
- → The effect of TPC space charge distortions are not taken into account.


Simulation for Λ , D⁰ particles:

- ★ We used Fast Decay simulation (with Root's decayer class).
- ★ The efficiency and p_T resolution of charged particles are used as proxy for decay daughters.

For Details: (Upgrade week Sept 19-23, 2022)

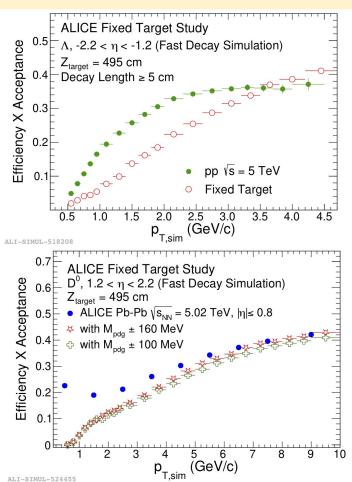
https://indico.cern.ch/event/1183733/contributions/5046904/

FT Workshop, Jan 5-7, 2023

Simulation of Λ and D⁰ Efficiencies

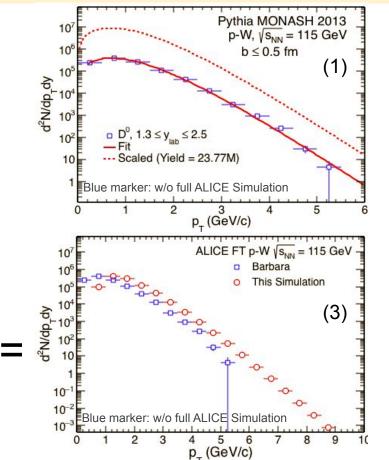
ALICE

Simulation result for Λ particles:

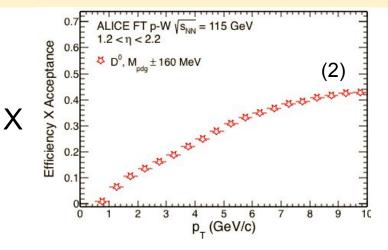

- ★ We applied topological cuts on decay length and invariant mass of Λ .
- ★ No other topological cuts (*e.g.* daughters)
- ★ Efficiency X Acceptance shown for Decay Length ≥ 5cm, and $|M_{inv}| \le M_{PDG} \pm 10$ MeV.
- ★ Efficiency is lower than collider events ⇒ But sufficient for physics analysis.

Simulation result for D⁰ particles:

- \star Topological cuts on invariant mass only.
- \star No other topological cuts (e.g. daughters).
- ★ Efficiency X Acceptance estimated by combinatorial method.
- \star Efficiency is lower than collider events
 - \Rightarrow But sufficient for physics analysis for $p_T > 1$ GeV/c.
- \rightarrow Resolution of both particle = 10%, at pT = 1.0 GeV/c.


For Details: (Previous FT Workshop, June 2022)

https://indico.cern.ch/event/1143479/contributions/4828560/

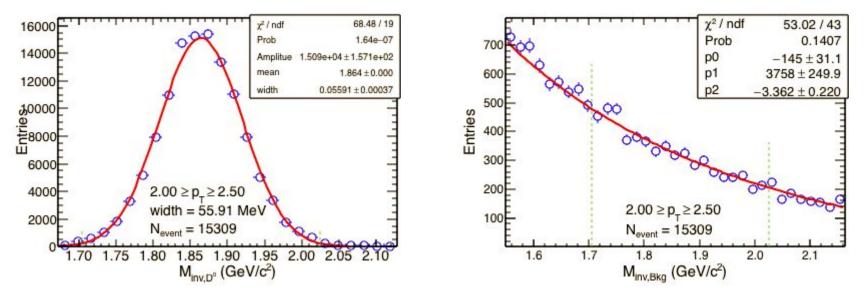


Expected D⁰ Yield (L_{int} = 0.6 pb⁻¹, W target width = 1 cm)

Md Rihan Hague

The number of D⁰ (w/o efficiency corr.) for 1 year running: = 0.229E-3 * 184 * 0.542 * 0.0389 * 0.0446 * 0.6E12 = 23.7 X 10⁶

Yield with efficiency:

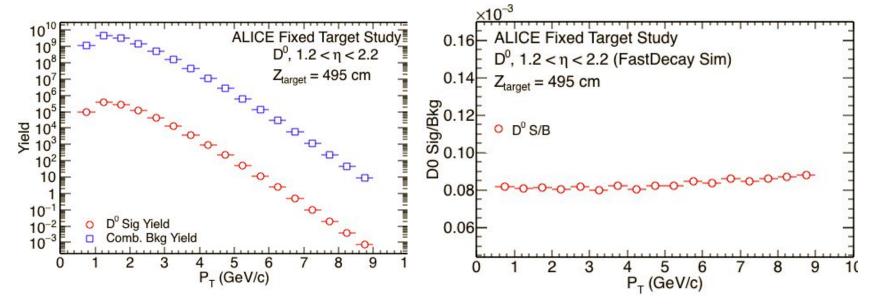

Pythia (Monash-13) spectra shape (Fig.1) X Efficiency (Fig.2) = Expected yield in each p_T bin (Fig-3)

Integrated Yield (w/ efficiency): ~ 1 Mil.

FT Workshop, Jan 5-7, 2023

D⁰ Signal and Combinatorial Background

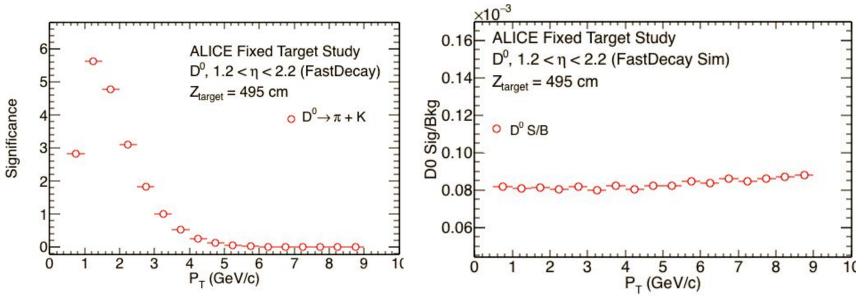
Combinatorial background: **without PID**, *i.e.*, take all +/- pairs.


Charged particle multiplicity sampled from A Multi Phase Transport (AMPT) model.

We generated p-W central events with $\sqrt{s_{NN}}$ = 115 GeV, and tracks selected within 1.2 < η < 2.2.

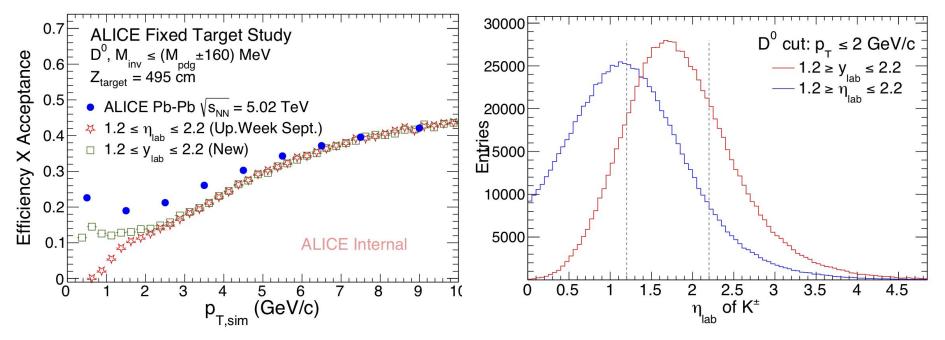
AMPT Generated particles are also treated for detector effects (efficiency & p_{τ} resolution)

D⁰ signal and background yields, S/B ratio



- > MB event : D^0 event ratio = **100K : 3.12** (Check backup slide for details).
- > This ratio is used as scaling factor for single event combinatorial background.
- > The background is scaled up as per expected number of D^0 in each p_T bin.
- > Signal / Background ratio is found to be ~ 8×10^{-5} , and almost flat w.r.t p_{T} .

D⁰ Significance and S/B ratio



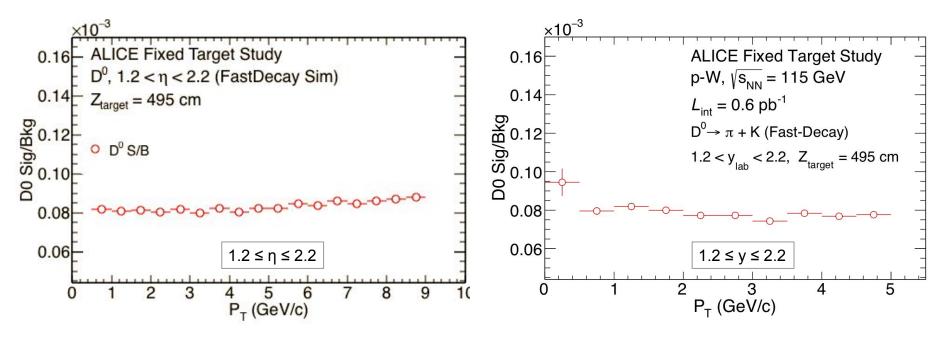
- Significance defined as = Signal / sqrt{Signal+Background}.
- > D^0 Significance closely follows the shape of the p_{τ} spectra.
- > Significance is maximum around $p_T \approx 1.5$ GeV/c and < 1 σ for $p_T > 3$ GeV/c.
- > We can extract D⁰ yield from the p_{τ} spectra up to 3 GeV/c ⇒ without any vertex tracker.

D^0 Efficiency estimation: η vs y cut



- > Due to geometry of the FT setup, rapidity cut on D^0 results into better acceptance of daughter tracks.
- > Consequently, the tracking efficiency increases for D^0 .
- > pT resolution however, remains unchanged.

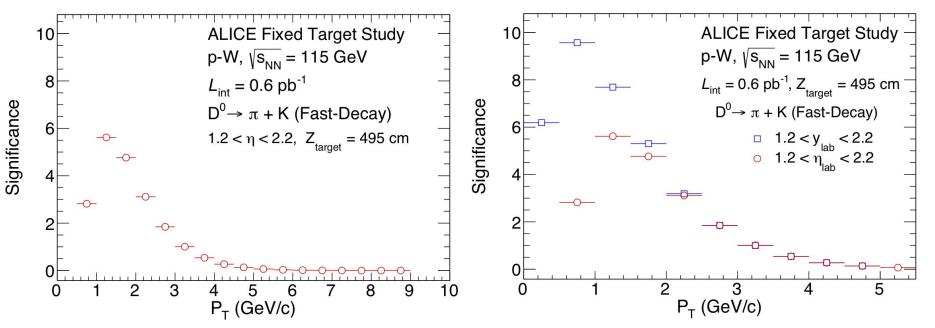
D⁰ Expected Yield: η vs y



- > With rapidity cut, the yield of D^0 improved at lower p_T (< 2.0 GeV/c).
- > The S/B and Significance, thus improved at lower p_{T}

11

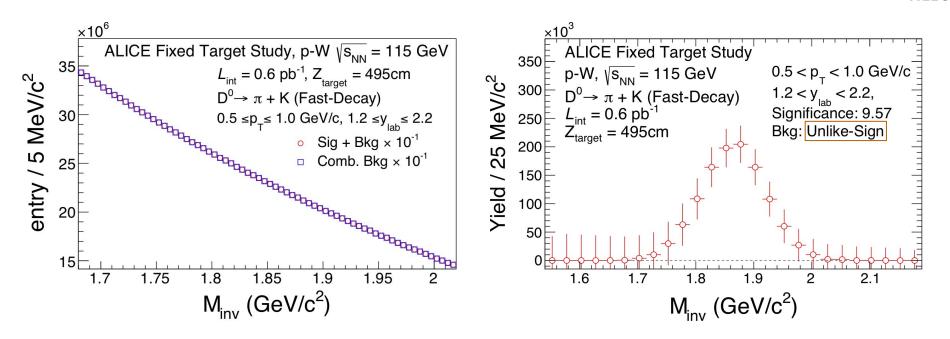
D⁰ Signal / Background: η vs y



- > With rapidity cut, the yield of D^0 improved at lower p_T (< 2.0 GeV/c).
- > The S/B improved at lower p_{T} (first bin).

12

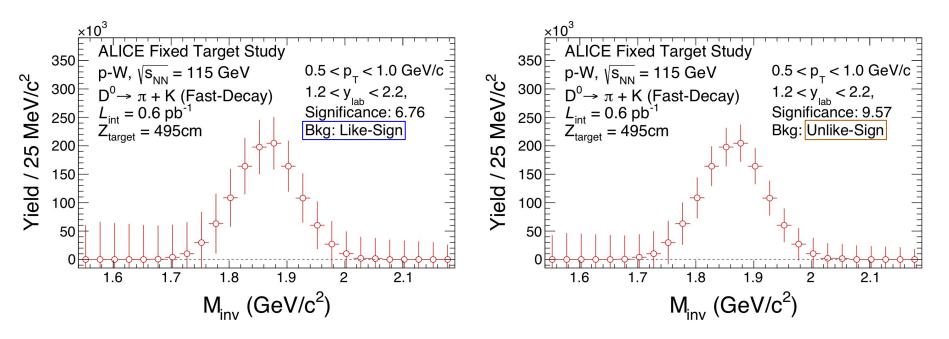
D⁰ Significance: η vs y



- > With rapidity cut, the yield of D^0 improved at lower p_T (< 2.0 GeV/c).
- > With increase in yield at low p_{τ} , the significance improved (as seen on the right figure).

FT Workshop, Jan 5-7, 2023

D^0 realistic M_{inv} distributions (for expected yields)



- > Figure on the left: M_{inv} distribution for events with D⁰, and unlike-sign (mixed event) background.
- > Figure on the right: M_{inv} distribution of D⁰, after subtraction of two histograms on the left figure.
- > Uncertainties on the mixed event bkg are assumed to be 0 (infinitive statistics).

FT Workshop, Jan 5-7, 2023

ALICE

D^0 realistic M_{inv} distributions (for expected yields)

- > Figure on the left: M_{inv} distribution for D⁰ signal, with like-sign (same-event) background method.
- > Figure on the right: M_{inv} distribution for D⁰ signal, with unlike-sign (mixed-event) background method.

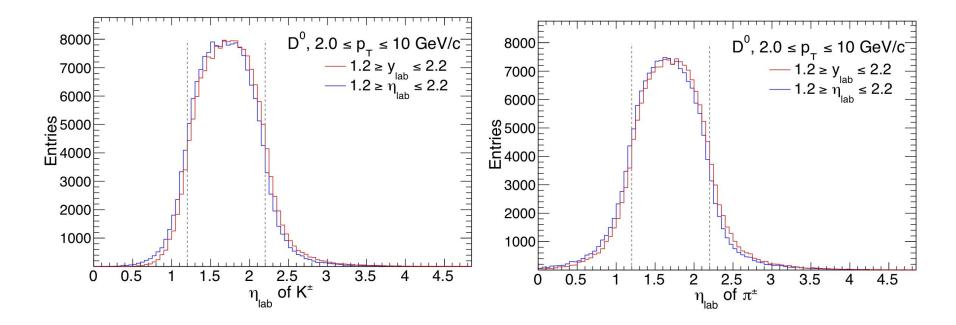
ALICE

Summary:

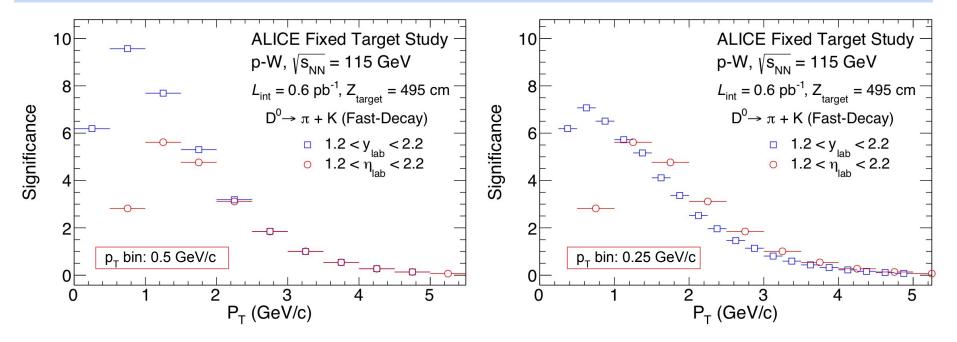
- 1. D⁰ Expected yield as function of p_T improved with y_{lab} cut.
- 2. The D⁰ significance improved (upto $\sim 10\sigma$) with rapidity cut.
- 3. Physics analysis with D⁰ in ALICE FT is possible without any additional tracker.

Outlook:

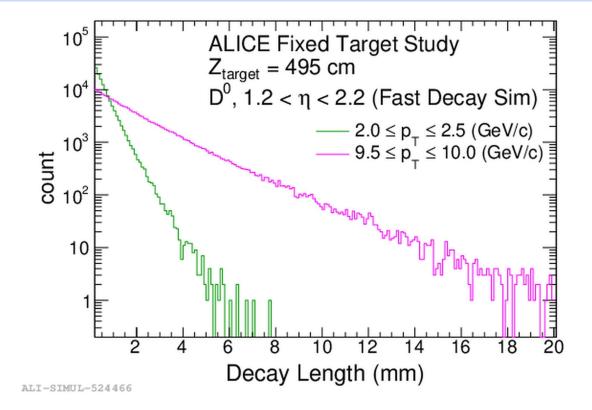
- 1. Study PID dependence of TPC response for FT tracks.
- 2. Study the trigger mechanism for FT events with forward detectors.


Acknowledgements:

Ruben Shahoyan, David Rohr, Marco Van Leeuwen, Jochen Klein, Marcin Patecki.


This Project is funded by the European Union's Horizon 2020 program (grant agreement No 824093).

Thanks for your attention!


Back-up: Daughter Acceptance: high $p_{\tau} D^0$

D^0 Significance: with fine p_{τ} bins

D⁰ Decay length

Event ratio estimation D^0 vs MB (part-1)

Estimation of D⁰ production rate in p-W events at $\sqrt{s_{NN}} = 115$ GeV.

We have a cross section of charm production in pp collisions from HELA-Conia σ^{cc} : 0.229 mb.

Charm production cross section for p-W events = $A^* \sigma^{cc}$ where (A = mass number for W).

Inelastic cross section of pp collisions at $\sqrt{s_{NN}} = \sigma_{inel} = 39$ mb. Inelastic cross section of p-W collisions: $\sigma_{inel}^* A^{2/3}$ D0 production ratio from open charms : 0.542

Therefore, the ratio of events with D^0 to the number of MB events in p-W collisions:

$$\frac{N_{D0}}{N_{MB}} = 0.542 * \frac{\sigma^{cc}A}{\sigma_{inel}A^{2/3}} = 0.542 * \frac{\sigma^{cc}A^{1/3}}{\sigma_{inel}}$$

Event ratio estimation D^0 vs MB (part-2)

Therefore using known values of cross sections & A, we get,

 $N_{D0}/N_{MB} = 0.542*0.229*(184)^{1/3}/39 = 0.018086 = 18 \text{ D}^0$ Events per 1000 MB Events.

Now, we only consider the $D0 \rightarrow K + pi$ channel, for which the branching ratio is 3.89%. Therefore, we need to take into account this factor as well.

The revised ratio of D^0 events to MB event for the $D^0 \rightarrow K + pi$ channel is,

 $N_{D0}/N_{MB} = 0.018086*0.0389 = 0.0007035 = 70 \text{ D}^0 \rightarrow \text{K+pi}$ events per 100K MB Events.

Finally, the rapidity acceptance factor for FT setup = 4.46%Therefore, N_{D0} (1.2 < y < 2.2) / N_{MB} = 70*0.0446 / 100K = 3.12 / 100K