Gluon TMDs

Introduction

Azimuthal modulations

Experimental applications

Conclusions

Studying gluon TMDs via J/ψ -pair production at the LHC in the fixed-target mode Fixed target experiments at LHC - strong2020 workshop

Alice COLPANI SERRI

University of Ferrara, University of Paris-Saclay

January 6, 2023

Alice COLPANI SERRI

University of Ferrara, University of Paris-Saclay

1 Introduction

2 Gluon TMDs

- 3 Azimuthal modulations
- **4** Experimental applications
- **5** Conclusions

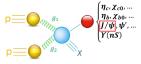
Alice COLPANI SERRI

University of Ferrara, University of Paris-Saclay

1 Introduction

- 2 Gluon TMDs
- 3 Azimuthal modulations
- 4 Experimental applications
- **5** Conclusions

- 《曰》 《國》 《필》 《필》 원]는 ''이오운'


Alice COLPANI SERRI

University of Ferrara, University of Paris-Saclay

Azimuthal modulations of the cross section for inclusive production of quarkonium pairs in hadronic collisions

 $\downarrow Inclusive production of J/\psi pairs in pp collisions (gluon fusion)$

 \hookrightarrow understanding the internal structure of nucleons \hookrightarrow gluon dynamics poorly known

Results \rightarrow future measurements at LHC fixed-target experiments \hookrightarrow unexplored Transverse Momentum Dependent PDFs (TMDs)

University of Ferrara, University of Paris-Saclay

 $\exists \rightarrow$

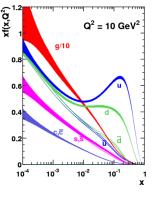
EL OQO

Experimental applications

Conclusions

Our knowledge of the internal structure of the proton

 $\begin{array}{l} \textbf{PDFs} \rightarrow \text{great precision} \\ \textbf{Collinear QCD phenomenology} \end{array}$


 \hookrightarrow only 1D information $\hookrightarrow x$ dependence

₩

3D structure of the nucleon Beyond collinear factorisation

↓ Transverse dynamics!

$$\label{eq:structure} \begin{split} \triangleright \mbox{ Nucleon structure in terms of } \mathbf{TMDs} & \to \mbox{ quark TMDs} \\ & \to \mbox{ gluon TMDs} \end{split}$$

University of Ferrara, University of Paris-Saclay

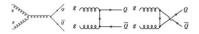
Fixed target experiments at LHC - strong2020 workshop

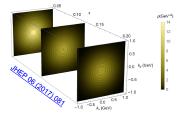
Alice COLPANI SERRI

-

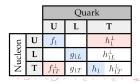
TMDs \rightarrow quark and gluon ones

Gluon TMDs


Introduction


000000

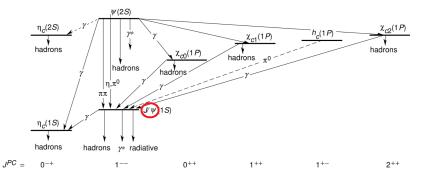
TMDs \rightarrow 3D structure of the nucleon Correlations between k_T and the polarisation of the nucleon/parton 2 components \triangleright collinear (x) \triangleright transversal ($\vec{k_{\perp}}$) \rightarrow generate q_T (final-state)


Quark TMDs extracted from data \hookrightarrow SIDIS, DY processes \hookrightarrow Precision era!

 $\begin{array}{l} {\sf Gluon \ TMDs} \rightarrow {\sf lack \ of \ data} \\ \hookrightarrow {\sf Extremely \ poorly \ know!} \\ \hookrightarrow {\sf How \ to \ measure \ them?} \\ {\sf Inclusive \ quarkonium \ production} \end{array}$

Experimental applications

University of Ferrara, University of Paris-Saclay


Alice COLPANI SERRI

Fixed target experiments at LHC - strong2020 workshop

Conclusions

Introduction Gluon TMDs Azimuthal modulations Experimental applications Conclusions 000000 Quarkonium production processes

Quarkonium = meson made of a Q and its \overline{Q} \hookrightarrow charmonium ($c\overline{c}$): J/ψ , Ψ ', η_c , χ_c ... \hookrightarrow bottomonium ($b\overline{b}$): Υ , η_b , χ_b ...

▲□▶ ▲圖▶ ▲ 볼▶ ▲ 볼▶ ▲ 필월 · 의 ۹ ()

Alice COLPANI SERRI

University of Ferrara, University of Paris-Saclay

Experimental point of view:

- quarkonium production observed in different experiments
- J/ψ : easy to produce and detect
 - \hookrightarrow plenty of experimental data

Theoretical point of view:

- Not clear how to treat quarkonium production
- 3 common models \rightarrow Colour Singlet Model (CSM) \rightarrow Colour Octet Mechanism (COM) \rightarrow Colour Evaporation Model (CEM)
- not complete agreement with experimental data
- for J/ψ -pair production: **CSM** best description

▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ 目 = ♪ ♀ (○

Introduction

2 Gluon TMDs

- 3 Azimuthal modulations
- 4 Experimental applications
- **5** Conclusions

Alice COLPANI SERRI

University of Ferrara, University of Paris-Saclay

Study of gluon TMDs \rightarrow TMD factorisation ($q_T \ll Q$)

General factorised cross section ↔ collinear partonic scattering amplitude (*perturbative*)

- \rightarrow connear partonic scattering amplitude (perturbat
- \hookrightarrow k_T -dependent correlators (*non-perturbative*)

$$d\sigma = \int dx_1 dx_2 d^2 \vec{k}_{T1} d^2 \vec{k}_{T2} \delta^{(2)} (\vec{k}_{T1} + \vec{k}_{T2} - \vec{q}_T) \\ \times \Phi_g^{\mu\nu}(x_1, \vec{k}_{T1}) \Phi_g^{\rho\sigma}(x_2, \vec{k}_{T2}) \left[\hat{\mathcal{M}}_{\mu\rho} \, \hat{\mathcal{M}}_{\nu\sigma}^* \right]_{\substack{k_1 = x_1 P_1 \\ k_2 = x_2 P_2}} \\ + \mathcal{O}\left(\frac{q_T^2}{Q^2}\right)$$

Alice COLPANI SERRI

University of Ferrara, University of Paris-Saclay

→ 同 → → ■ → → 三 三 ・ ク Q ()・

Introduction Gluon TMDs Azimuthal modulations Experimental applications Conclusions

Gluon TMDs

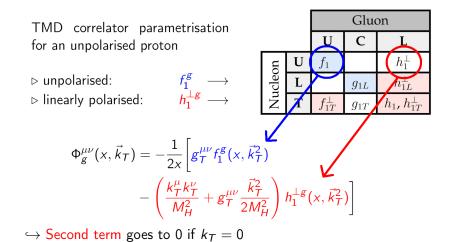
2 independent collinear partonic distributions:

- $f_1^g(x)$ "unpolarised"
- $g_1^g(x)$ "circular"

Unpolarised protons \rightarrow 2 TMDs:

- f_1^g : unpolarised gluon TMD
- $h_1^{\perp g}$: linearly polarised gluon TMD

		Gluon		
		U	C	L
Jucleon	U	f_1		h_1^\perp
	L		g_{1L}	h_{1L}^{\perp}
Nu	Τ	f_{1T}^{\perp}	g_{1T}	h_1 , h_{1T}^{\perp}


University of Ferrara, University of Paris-Saclay

<ロ> <問> < 目> < 目> < 目> < 目< のへの</p>

Alice COLPANI SERRI

Gluon TMDs and correlators

Alice COLPANI SERRI

- Single J/ψ production: a lot of data at low p_T √
 ⇒ but gluon in the final state → presence of soft gluons (non-perturbative) between Initial State Interactions (ISIs) and Final State Interactions (FSIs) can be problematic
 ⇒ no TMD factorisation
- Single η_c production: no gluon in the final state √
 → but no data at low p_T: no TMD factorisation
- Double J/ψ production:
 - \triangleright data at low $p_T \checkmark$

 \triangleright no gluon in the final state \checkmark

- \hookrightarrow gluon fusion: ISI can be encapsulated in the TMDs
- $\hookrightarrow \mathsf{consider}\;\mathsf{CSM}{:}\;\mathsf{no}\;\mathsf{FSIs}$

\rightarrow Safe TMD factorisation

Alice COLPANI SERRI

University of Ferrara, University of Paris-Saclay

・同・・ヨト ・ヨト ヨヨ うくや

1 Introduction

2 Gluon TMDs

- **3** Azimuthal modulations
- 4 Experimental applications
- **5** Conclusions

Alice COLPANI SERRI

University of Ferrara, University of Paris-Saclay

The general formula for the cross section of gluon fusion is:

 $d\sigma^{gg} \propto F_1 \times C[f_1^g f_1^g] + F_2 \times C[w_2 h_1^{\perp g} h_1^{\perp g}] + (F_3 \times C[w_3 f_1^g h_1^{\perp g}] + F_3' \times C[w_3' h_1^{\perp g} f_1^g]) \cos(2\Phi_{CS}) + (F_4 \times C[w_4 h_1^{\perp g} h_1^{\perp g}]) \cos(4\Phi_{CS})$

- first two members: azimuthally independent
- third member: $\cos(2\Phi_{CS})$ -modulation
- fourth member: $\cos(4\Phi_{CS})$ -modulation

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シのの

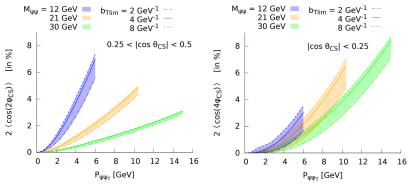
Alice COLPANI SERRI

Introduction Gluon TMDs Azimuthal modulations Experimental applications Conclusions Coopoologic Computation of azimuthal modulations

The correspondent expressions for $\cos(2\Phi_{CS})$ and $\cos(4\Phi_{CS})$:

$$\langle \cos(2\phi_{CS}) \rangle = \frac{1}{2} \frac{F_3 \mathcal{C}[w_3 f_1^g h_1^{\perp g}] + F_3^\prime \mathcal{C}[w_3^\prime h_1^{\perp g} f_1^g]}{F_1 \mathcal{C}[f_1^g f_1^g] + F_2 \mathcal{C}[w_2 h_1^{\perp g} h_1^{\perp g}]} \\ \langle \cos(4\phi_{CS}) \rangle = \frac{1}{2} \frac{F_4 \mathcal{C}[w_4 h_1^{\perp g} h_1^{\perp g}]}{F_1 \mathcal{C}[f_1^g f_1^g] + F_2 \mathcal{C}[w_2 h_1^{\perp g} h_1^{\perp g}]}$$

- The hard-scattering coefficients (F₁, F₂, F₃, F₃, F₄) give the explicit dependence on M_{ψψ} and θ_{CS}
- Set scale $Q^2 = M_{\psi\psi}^2$ and consider $M_{\psi\psi} = 8,16$ GeV \hookrightarrow TMD evolution applied in the computation


Alice COLPANI SERRI

▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ 目 = ♪ ♀ (○

 $\begin{array}{c|c} \hline \mbox{Introduction} & Gluon TMDs & Azimuthal modulations & Experimental applications & Conclusions & OOC & OO$

Plots considering:

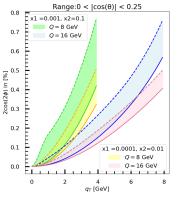
- two ranges of $\cos(\theta_{CS})$: [0; 0.25] and [0.25; 0.50]
- three values for the invariant mass: 12, 21, 30 GeV; x1=x2

Eur.Phys.J.C 80 no.2,(2020) 87, arXiv:1909.05769 [hep-ph]

Alice COLPANI SERRI

University of Ferrara, University of Paris-Saclay

Goal: phenomenological study of the azimuthal modulations for J/ψ pair production in pp fixed-target collisions $\rightarrow x_1 \neq x_2$ Implementation: ex-novo code in Python TMD factorisation TMD convolutions TMD evolution (use of LHAPDF package for PDF parametrisation) 1 Code validation: reproduced published results (collider mode) **NEW**: first studies with $x_1 \neq x_2$ (fixed-target kinematics) (two sets of x_1, x_2 but same rapidity $y = \frac{1}{2} \ln \frac{x_1}{x_2}$)


伺 ト イヨト イヨト ヨヨ わへつ

Introduction Gluon TMDs Azimuthal modulations Experimental applications Conclusions Preliminary: predictions for $\cos(2\Phi_{CS})$

Plots considering:

• range of cos($heta_{CS}$): [0; 0.25], $Q = M_{\psi\psi}$

• two different sets $(x_1; x_2)$: $(10^{-3}; 10^{-1})$ and $(10^{-4}; 10^{-2})$

▷ contribution below 1%

 $\triangleright q_T < Q/2$ considered

 \triangleright big overlap in the low q_T region, not for large q_T

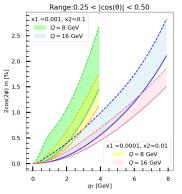
 $\triangleright \sim$ same magnitude for low and high Q (lower for lower $x_{1,2}$)

Alice COLPANI SERRI

University of Ferrara, University of Paris-Saclay

• = • • = •

Fixed target experiments at LHC - strong2020 workshop


EL OQO

Gluon TMDs Azimuthal modulations Experimental applications Introduction Conclusions 000000000 Preliminary: predictions for $\cos(2\Phi_{CS})$

Plots considering:

• range of $\cos(\theta_{CS})$: [0.25; 0.50], $Q = M_{\psi\psi}$

two different sets $(x_1; x_2)$: $(10^{-3}; 10^{-1})$ and $(10^{-4}; 10^{-2})$

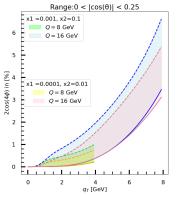
 \triangleright contribution up to 3% (measurable) $\triangleright q_T < Q/2$ considered

 \triangleright big overlap in the low q_T region, not for large q_T

 \triangleright ~ same magnitude for low and high Q (lower for lower $x_{1,2}$)

Alice COLPANI SERRI

・ 同 ト ・ ヨ ト ・ ヨ ト ・ University of Ferrara, University of Paris-Saclay


Fixed target experiments at LHC - strong2020 workshop

EL OQO

 $\begin{array}{ccc} & & & \\ \mbox{Introduction} & & & \\ \mbox{Ococo} & & & \\ \mbox{Ocococococo} & & & \\ \mbox{Ococococococococo} & & & \\ \mbox{Oco$

Plots considering:

- range of $\cos{(heta_{CS})}$: [0; 0.25], $Q=M_{\psi\psi}$
- two different sets $(x_1; x_2)$: $(10^{-3}; 10^{-1})$ and $(10^{-4}; 10^{-2})$

▷ max contribution 5 - 6% (measurable)

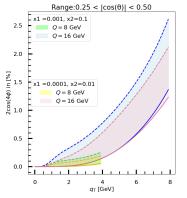
$$> q_T < Q/2$$
 considered

 \triangleright overlap $\forall q_T$

 \triangleright much higher amplitude for high Q (at high q_T)

Alice COLPANI SERRI

University of Ferrara, University of Paris-Saclay


Fixed target experiments at LHC - strong2020 workshop

 $\begin{array}{cccc} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$

Plots considering:

• range of $\cos{(\theta_{CS})}$: [0.25; 0.50], $Q = M_{\psi\psi}$

• two different sets $(x_1; x_2)$: $(10^{-3}; 10^{-1})$ and $(10^{-4}; 10^{-2})$

▷ contribution up to 3% (measurable)

$$> q_T < Q/2$$
 considered

 \triangleright overlap $\forall q_T$

b higher amplitude for highQ (low Q negligible)

Alice COLPANI SERRI

University of Ferrara, University of Paris-Saclay

Fixed target experiments at LHC - strong2020 workshop

ELE NOR

1 Introduction

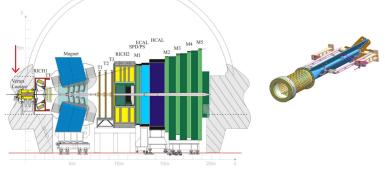
2 Gluon TMDs

- 3 Azimuthal modulations
- **4** Experimental applications
- **5** Conclusions

- ・ロト・西ト・ヨト・ヨト 小口・ うへの

Alice COLPANI SERRI

University of Ferrara, University of Paris-Saclay


Introduction Gluon TMDs Azimuthal modulations

Experimental applications

Conclusions

LHCb in the fixed-target mode: SMOG2

System for Measuring Overlap with Gas (SMOG): LHCb implementation for fixed-target data-taking Upgrade: SMOG2 \rightarrow openable storage cell in front of the VELO

(https://arxiv.org/abs/2111.09611)

Alice COLPANI SERRI

University of Ferrara, University of Paris-Saclay

Fixed target experiments at LHC - strong2020 workshop

 $= \mathcal{O} Q Q$

- > LHCb can run simultaneously in collider and fixed-target mode
- > Beam-gas interaction region well defined
- \triangleright Large target areal density ($\mathcal{L} \sim 10^{32} \text{cm}^{-2} \text{s}^{-1})$
- Possibility to inject a wide range of gases through a gas injection system (not only noble gases!)
- ▷ Large statistics expected for $J/\psi \rightarrow \mu^+\mu^ \hookrightarrow$ (15M expected in LHC Run3)

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シのの

1 Introduction

- 2 Gluon TMDs
- 3 Azimuthal modulations
- 4 Experimental applications
- **5** Conclusions

- 《日》《圖》《言》《言》 通言 めんの

Alice COLPANI SERRI

University of Ferrara, University of Paris-Saclay

Introduction	Gluon TMDs	Azimuthal mo	

ithal modulations 00000 Experimental applications

Conclusions

Summary

- Quarkonium production is a great tool for many purposes
 → exploration of nucleon structure through gluon TMDs
- Double J/ψ production gives the possibility to investigate gluon TMD induced effects
 - \hookrightarrow azimuthal modulations already studied in the collider mode
- **NEW** Fixed-target mode: lower azimuthal modulations for $\frac{x1}{x2} \neq 1$ (x1 \simeq x2, collider mode, seems to be favoured)
- SMOG2: great opportunity to explore quarkonia production processes, in particular $J/\psi \rightarrow \mu^+\mu^-$: will be extensively produced at LHCb with SMOG2
- FUTURE Further studies can be made in the (near) future considering polarised protons → access to more gluon TMDs

Shank you for your attention!

Alice COLPANI SERRI

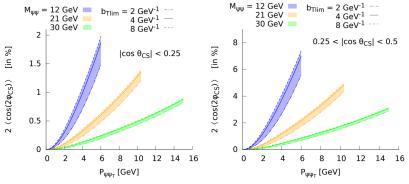
University of Ferrara, University of Paris-Saclay

Backup slides

Alice COLPANI SERRI

University of Ferrara, University of Paris-Saclay

< 67 ►


Fixed target experiments at LHC - strong2020 workshop

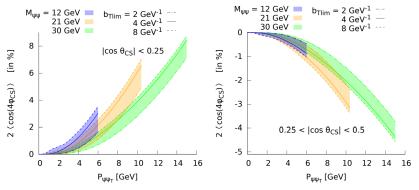
ヨト ▲ヨト ヨヨ わへで

Results in collider mode: $\cos(2\Phi_{CS})$

Plots considering:

- two ranges of $\cos(\theta_{CS})$: [0; 0.25] and [0.25; 0.50]
- three values for the invariant mass: 12, 21, 30 GeV; x1=x2

Eur.Phys.J.C 80 no.2,(2020) 87, arXiv:1909.05769 [hep-ph]


Alice COLPANI SERRI

University of Ferrara, University of Paris-Saclay

Results in collider mode: $\cos(4\Phi_{CS})$

Plots considering:

- two ranges of $\cos(\theta_{CS})$: [0; 0.25] and [0.25; 0.50]
- three values for the invariant mass: 12, 21, 30 GeV; x1=x2

Eur.Phys.J.C 80 no.2,(2020) 87, arXiv:1909.05769 [hep-ph]

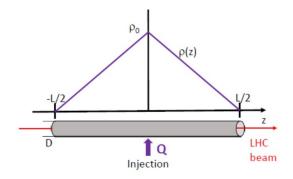
Alice COLPANI SERRI

University of Ferrara, University of Paris-Saclay

Hard scattering coefficients

$$F_{1} = \frac{\mathcal{N}}{\mathcal{D}M_{\Psi}^{2}} \sum_{n=0}^{6} f_{1,n} (\cos \theta_{CS})^{2n} \qquad F_{2} = \frac{2^{4} 3 M_{\Psi}^{2} \mathcal{N}}{\mathcal{D}M_{\Psi\Psi}^{4}} \sum_{n=0}^{4} f_{2,n} (\cos \theta_{CS})^{2n}$$

$$F_{3}' = F_{3} = \frac{-2^{3} (1 - \alpha^{2}) \mathcal{N}}{\mathcal{D}M_{\Psi\Psi}^{2}} \sum_{n=0}^{5} f_{3,n} (\cos \theta_{CS})^{2n}$$


$$F_{4} = \frac{(1 - \alpha^{2})^{2} \mathcal{N}}{\mathcal{D}M_{\Psi\Psi}^{2}} \sum_{n=0}^{6} f_{4,n} (\cos \theta_{CS})^{2n}$$
(1)

with:
$$\alpha = \frac{2M_{\Psi}}{M_{\Psi\Psi}}$$
, $\mathcal{N} = 2^{11}3^{-4}(N_c^2 - 1)^{-2}\pi^2 \alpha_s^4 |R_{\Psi}(0)|^4$,
 $\mathcal{D} = M_{\Psi\Psi}^4 (1 - (1 - \alpha^2)\cos\theta_{CS}^2)^4$ and $R_{\Psi}(0)$ is the J/ψ radial wave function at the origin and $N_c = 3$.

Alice COLPANI SERRI

Tabular storage cell SMOG2

Scheme of a tubular storage cell of length L and inner diameter D. Injection is in the center with flow rate Q, resulting in a triangular density distribution $\rho(z)$ with maximum ρ_0 at the center

(http://cds.cern.ch/record/2673690)

Alice COLPANI SERRI

Fixed target experiments at LHC - strong2020 workshop

University of Ferrara, University of Paris-Saclay

312