

Reliability and Component Ageing with highlight on Electrolytic capacitors and Batteries

I.Josifovic / G.Le Godec / S.Pittet EDMS <u>2899178</u> 7th Workshop on Power Converters for Particle Accelerators – 31st May/2nd June 2023 – MedAustron

On the Menu

- Why Energy Storage @CERN?
- SIRIUS family case: Electrolytic capacitors
- HL-LHC 18 kA case: Lithium Titanate (LTO) batteries
- A possible outlook on the future

Why Energy Storage?

Adding an Energy Storage System (ESS)

Why Energy Storage?

Adding an Energy Storage System (ESS)

SY

Accelerator Systems

SIRIUS family [200...800 kW] for warm magnets

SIRIUS Converters at CERN

- For Proton Synchrotron Complex
 - 200 SIRIUS in operation since 2020
 - 550 power racks
 - 60 MW of peak power available for users
 - 6 MVA of grid Power
- SIRIUS converter with Boost Charger in DC-link
 - Peak power limitation from Electrical Grid
 - Energy Recovery in DC link / Energy Storage Banks
 - Modularity: possible connections of up to 4 interleaved bricks in series or parallel configuration

SIRIUS Industrialisation

Energy Storage Banks with Electrolytic Capacitors

\blacktriangleright Energy bank = (3 x 5) x C_{elco}

- $C_{elco} = 29 \text{ mF} (+-20\%) / 400 \text{ V}$
- ➢ 300 million cycles over 15-y lifetime
 - Charge / discharge every 1.2 s
- > DOD of 100V per capacitor ($V_{max,op}$ = 300V)
- > 800 energy storage banks
- ▶ 12 000 electrolytic capacitors
- ➢ 24 MJ of energy stored

Capacitors integration in Energy Bank

Energy Banks integration in SIRIUS

SY

Market status for 29 mF / 400 V in 2018: Single off-the-shelf, catalog capacitor!

Electrolytic Capacitors Tests in 2018

Capacitance – the more the better?

Leakage current – the smaller the better?

Lifetime – the more the better?

Test set-up and Capacitors Characterisation

2 samples / supplier 1 with TC in hot-spot

Low-frequency characterisation waveforms with SIRIUS

Characterisation results

Internal temperature rise < 15 °C

ESR at low frequencies

ESR increases sharply at low frequencies

→ behavior of Al2O3 dielectric!

Accelerated Aging – How to Accelerate?

400 \blacktriangleright Use real excitation waveform (1.2 s) 380 Voltage [V] 340 2.1 million cycles ▶ Push the voltage to the max: 400 Vdc per month! 320 > Push the current to the max: $I_{test} = 16$ Arms ($I_{on} = 6$ A_{rms}) 300 0 0.2 0.4 0.6 0.8 time [s] 60 40 \triangleright Push the temperature to the max: Arrhenius equation for lifetime Current [A] 20 • $T_{amb,test} = 70 \text{ °C} (T_{amb,op} = 40 \text{ °C})$ 0 $rac{V_{rated}}{V_{op}}$ $L = L_0 \times 2$ • $T_{hs,test} = 85 \text{ °C} (T_{hs,op} = 45 \text{ °C})$ -20 -40 T_{hs rated} = [90 - 95] °C -60 T_{aub} - ambient operating temperature 0.2 0.8 0 0.4 0.6 \succ End-off life criteria: time [s] ∆Thsamb- ambient to hot-spot (core) temperature rise V_{on}- operating DC voltage • ESR > 2 x ESR_{initial} #harmonics = 25 Ð V_{rated} - rated DC voltage Current Amplitude [A] fundamental f1 = 0.833 Hz • $C < 0.8 \times C_{initial}$ • IL > 1.5 x Il_{initial} (too much constraining?) • Destruction of capacitor 0 🕒 5 0 10 15 20 Frequency [Hz]

SY

CERN application : Stressing of capacitor at low frequency means stress of Al2O3 dielectric!

1.2

1.2

25

1

1

Accelerated Aging – Test Results

Capacitor D

End of life after 2.4 million cycles End-of life for 2 samples: ESR and IL

Failed

Capacitor C

End of life after 5.2 million cycles End-of life, 2 samples: safety vent

Electrolyte projection

Failed

Capacitor A & B

No end-of-life after 7.5 million cycles

Passed: 1x Catalog Capacitor + 1x Custom-design Capacitor

Results summary

The datasheet lifetime estimation is no meaningful.

Pa	ss	Fail		
C	[mF] - 1	easured		
26.8	29.3	31.8	28.7	
A	В	С	D	
Lea	rent [mA ured	¥] -		
1	2.2 B	4	4.5 D	
A	В	с —	0	
Lifetii	me [ho	rs] - cla 15000	imed 15000	
6000 A	8000 B	C	D	

What's next? POLARIS: Energy recovery with 2Q-converter

SPS and North Area Consolidation

- ➢ Phase I: 2026
- ➢ Phase II: 2032
- ➢ 450 POLARIS converters
- ➤ 1400 converter cabinets

Energy bank

- \succ C_{bank} = 10 x C_{elco}
- \blacktriangleright C_{elco} = 25 mF (-0 % / + 20%) / 400 V
- DOD of 200V per capacitor
- > **34 million cycles** over 15-y lifetime
- 2 500 energy storage banks
- > 25 000 electrolytic capacitors

POLARIS with 2Q-converter for Energy Management

HL-LHC18kA-10V POWER CONVERTER TOPOLOGY

18 kA converter

- > 10 x sub-converters of 2kA each (N+1 redundancy)
- Energy Storage System (ESS)
- 4Q DC-DC output stage
- Crowbar for energy extraction

4 Q DC-DC output stage

SY

Accelerator Systems

- > 8x H-bridges in parallel per sub-converters -> interleaving
- > 960 MOSFETs with TO-220 package for the whole converter
- Simple topology, good efficiency.

ENERGY STORAGE SYSTEM TECHNOLOGIES

Tens of thousands of cycles required

ENERGY STORAGE SYSTEM TECHNOLOGIES

Technologies selection

11 kWh example	EDLC Supercaps	LiC Supercaps	LTO Batteries		
Weight [kg]	2500	1390	900		
Volume [I]	2550	1200	700		
Number of racks	5	2-3	2		
Total cells price [€]	250k	216k	40k + BMS		
Cycle life	1M	>200k	>75k		

LTO is the most cost and size effective technology for this application

SY

Accelerator Systems

ENERGY STORAGE SYSTEM TECHNOLOGIES

Reasons to choose Lithium Titanate Oxide (LTO) batteries compared to other battery technologies:

- Safety first! Lowest hydrogen emissions, best thermal stability, ...
- Widest operating temperature range
- High current (C-rate) charge/discharge capabilities
- Very low internal resistance
- Very low self-discharge

2 batteries in parallel in an ESS module

ENERGY STORAGE SYSTEM SIZING

Oversizing required for several reasons:

- Reduce the State of Charge (SoC) operating range within [20; 80] %
 - Ease the charging process
 - Increase battery cycle life

Cycle Life Table for Altairnano Gen 4 cells and modules

	Average Cell Temperature (°C)						
	25	30	35	40	45	50	55
DOD (%)		Cycle Life	e (cycles to 809	% of original cl	narge capac	ity)	
100	25,000	19,847	15,753	12,504	9,925	7,878	6,253
90	30,864	24,503	19,449	15,437	12,253	9,726	7,720
80	39,063	31,011	24,615	19,538	15,508	12,309	9,770
70	51,020	40,504	32,150	25,519	20,255	16,077	12,761
60	69,444	55,131	43,760	34,734	27,569	21,883	17,369
50	100,000	79,388	63,014	50,016	39,700	31,512	25,012
40	156,250	124,044	98,459	78,151	62,031	49,237	39,081
30	277,778	220,523	175,038	138,935	110,278	87,532	69,478
20	625,000	496,178	393,836	312,603	248,125	196,947	156,325
10	2,500,000	1,984,711	1,575,344	1,250,412	992,502	787,788	625,298

ENERGY STORAGE SYSTEM SIZING

Oversizing required for several reasons:

- Reduce the State of Charge (SoC) operating range within [20; 80] %
 - Ease the charging process
 - Increase battery cycle life
 - Stabilize the battery voltage
- Take into account the ageing of the battery, reducing the capacity of the battery
 - Battery is considered "dead" when charging only up to 80 % of its initial capacity

QUALIFICATION TESTS

Tolerance to thermal and mechanical tests

- Crush
- Vibration
- Impact
- **Drop**
- Immersion
- Thermal cycling
- Fire propagation

Accelerator Systems

SY

QUALIFICATION TESTS

Tolerance to electrical abuse tests:

- Forced discharge
- Over-charge
- External short-circuit
- Internal short-circuit
- Overcharge control of voltage (BMS-oriented)
- Overcharge control of current (BMS-oriented)
- Overheating control (BMS-oriented)

Photograph 12: Module Short Circuit Setup

Photograph 13: Short Circuit Load Setup

OUTLOOK ON A POSSIBLE FUTURE

SY Accelerator Systems

CERN

ENERGY STORAGE FOR THE FCC-HH

A few numbers for FCC-HH

Similar ramp-up/down time than LHC

-3 -4

time [hours]

Storage with LTO batteries

- Total volume: 760 m³
- Total weight: 1450 Tons
- Expected lifetime with 1600 cycles / year: 22 years
- Total cost over lifetime: 176 MCHF
- Annual cost: 8 MCHF
- Annual savings (0.1 CHF/kWh, 80% efficiency): 6.2 MCHF
 + reduction of infrastructure costs

24 V / 70 Ah (3.4 MJ from 20% to 80%) LTO module

	Average Cell Temperature (°C)							
	25	30	35	40	45	50	55	
DOD (%)	Cycle Life (cycles to 80% of original charge capacity)							
100	25,000	19,847	15,753	12,504	9,925	7,878	6,253	
90	30,864	24,503	19,449	15,437	12,253	9,726	7,720	
80	39,063	31,011	24,615	19,538	15,508	12,309	9,770	
70	51,020	40,504	32,150	25,519	20,255	16,077	12,761	
60	69,444	55,131	43,760	(34,734)	27,569	21,883	17,369	
<mark>5</mark> 0	100,000	79,388	63,014	50,016	39,700	31,512	25,012	
40	156,250	124,044	98,459	78,151	62,031	49,237	39,081	
30	277,778	220,523	175,038	138,935	110,278	87,532	69,478	
20	625,000	496,178	393,836	312,603	248,125	196,947	156,325	
10	2,500,000	1,984,711	1,575,344	1,250,412	992,502	787,788	625,298	

Thanks for your attention...Questions?

home.cern

BACK-UP SLIDES

Electrolytic Capacitors Qualification

Procurement Strategy:

Off-the-shelf or Custom-Design Capacitors

Endurance Tests

End-of-life: Destruction / $\Delta C = -20\%$ / $\Delta ESR = +100\%$ / $\Delta IL = +50\%$.

Minimum requested number of cycles at $T_{amb} = 70 \text{ °C} = 8 \text{ million cycles}$

Electrolytic capacitors: Safety aspects

Electrolytic Capacitor Tests

Konstantinos Papastergiou

TE-EPC

25 May 2018

Objectives

- Qualitative assessment of the impact of a capacitor failure
- Verify Sirius metallic enclosure withstand to a destructive failure
- Qualitative assessment of the impact on surrounding equipment
 - From heat and fire
 - From debris and flying parts
 - From the electrolyte evaporation
- Identify the audible magnitude of a failure

Test Protocol

- Test 1: Continuous rated peak voltage across a capacitor
 - Single point of failure will result in this condition
 - Withstand over long time to be determined
 - Repeat on three different samples
- Test 2: Continuous over-voltage (x2) across a capacitor
 - A double failure will result in this condition
 - Worst case if energy source not disconnected
 - Repeat on three different samples
- Test 3: Reverse polarisation
 - Reverse polarisation of a capacitor
 - May occur as a result of manufacturing error
 - Repeat on three different samples

Test setup description

• Test 1 & 2

- Overvoltage on DUT
- With and without external source

• Test 3

- Reverse polarisation of DUT
- Gradual increment of source voltage

Test 1 Results: continuous peak voltage

Shot 1: 450V on DUT -> no failure during 1h
Shot 2: 550V on DUT -> instant destructive failure
Shot 3: gradual increase 450V to 520V on DUT:
Failure at 520V after 1320sec

SY

Test 2 Results: over-voltage (x2)

Shot 1: 900V on DUT with external source -> failure after 73s

Shot 2: 900V on DUT, external source disconnected -> no failure, DUT operational after test Shot 3: 900V on DUT, external source disconnected -> no failure, DUT operational after test Shot 4: 900V on DUT with external source -> destructive failure

CH1: 0.10000kV/Div×1/1 H. 90800kV $500 \mu s/Div$ Precharge:300V Element popped out CH1:Cx Voltage Measurement cycle: 1 point / 200 ms 100V/Div 100 -Voltag 900 90 CH2:Cx Current Cx Peak voltage:737V -Surface Tem 800 80 Cap breakage 20kA/V. 700 70 Lead tab breakage 200mV/Div ≥ 600 Sleeve melter 60 a 500 50 S₁ON /olt 400 40 300 30 20 200 Cx Inrush current:16.6kA 10 S₁ ON 100 400 500 300 No short circuit data time [s] CH1 Ø. 73680kV 0.8285V +0004.25000m 'D TIME 2018/04/18 15:28:33.47 Test 2

Test 3 Results: reverse polarisation

Shot 1: Reverse polarisation of DUT with external source -> failure, open vent

SY

Summary of test results

- Test 1 & 2: single point of failure
 - Over-voltage <37%** : No failure after 1 hour of exposure
 - Over-voltage >37% with Sirius capacitor banks energy: Failure mode is uncertain
 - Over-voltage >37% with Sirius capacitor bank energy and external energy source: Destructive failure mode after some time
- Test 3: polarity reversal
 - Failure with open-vent after 900sec if source remains energised.

Sirius Capacitor Failure Tests - Conclusions

- Electrolytic capacitors are prone to failure if exposed to over-voltage.
- There is no evidence that energy stored in a Sirius brick can cause by itself destructive failure or fire.
- A failure may become destructive in case an energy source remains energised after the event.
- Key findings:
 - Destructive failure of capacitors (fumes, debris) is contained by the enclosure
 - Destructive failure of capacitors has no structural impact on the Sirius metallic enclosure
 - Destructive failure has limited impact on the equipment directly above
 - The peak observed sound level was 135.5db at 0.5 meter from the cabinet

A report is circulated internally for approval and will be placed under <u>CERN-0000189820</u>

*Destructive is a failure that results on visible damage to the capacitor can or its surroundings *Reports and media in EDMS folder <u>CERN-0000189820</u>

