

Elettra Sincrotrone Trieste

Power Converters Lab

Elettra 2.0 Corrector, Multipolar and Dipole Power Converters

M.Cautero, E.Yousefi

Magnet Power Converters for Elettra 2.0

Marco Cautero, POCPA meeting 31st May, 2023

Goal:

minimize, with the magnet designers, the number of types of power supplies for the various typologies of magnets, using the same controller for all kinds.

Benefits:

- Cost reduction, maintenance and spare parts management
- Unification of the control hardware (e.g. Ethernet interface with TCP-IP), interlock signals, and software.

Water Vs Air cooling

Experience at Elettra:

- Water-cooling has caused and still causes a non-negligible source of downtime. Sometimes leaks are fatal to the electronics.
- Air-cooling requires stable air temperature and a constant flow to maximize stability of the power supplies.
- We will place the power converters inside normal racks, heat load to the Service Gallery has to be considered.

One to One

One-to-one correspondence (power supplies – magnets):

- implies large number of power cables to the SR
- Power converters placed in the same positions of the present cabinets allows using the existing cable trays.
- Short cables limit the EMI spread.

Magnet-Power Converters optimization:

- 2 types of dipoles use the same type of converter.
- 3 types of quadrupoles and 3 types of sextupoles require only one type of power converter.
- the embedded correctors, fast correctors, skew quadrupoles and ID corr.coils use the same type of power converter.

In total we have just 3 kinds of Power Converters for the entire machine

Specifications from Machine Physicists

Magnet Type	Dipole	Sext	Quad	Skew- Quad	Corr	Oct	PSB TrimC	Fast Corr	Unit	
PS Mode	Unipolar			Bipolar		Unipolar	Bipolar	Bipolar	Unit	
PS Type	PSB	PSQS		PSC		PSOC	PSB_T	PSFC		
Max lout	300	100		25		100	100	5	А	
Max Vout	20	15	15	10	10	10	5	*TBD*	V	
Max Pout	6	1.5	1.5	0.2	0.2	1.0	0.5	5*Vout	kW	
Op. Range	5 – 95	5 – 95	5 – 95	Full	Full	5 – 95	Full	Full	% lout	
Stability (8h)	30	100	25	50	20	100	100	20	ppm _{pp} /FS	
Ripple	30	100	100	100	500	100	100	500	ppm _{pp} /FS	
Total PS	72	432		432		48	48	192	1224	

UNI EN ISO 9001:2015 UNI ISO 45001:2018 Marco Cautero, POCPA meeting 31st May, 2023

Island configuration (achromat half cell)

	19" Rack, 42U							
	RPS_AXX.01		RPS_AXX.02		RPS_AXX.03		RPS_AXX.04	
42	ETH Switch	1						
41		2	0.03	2	0.04	2	0.04	2
40		3	0.03	3	0.03	3	0.03	3
39		4	0.03	4	0.03	4	0.03	4
38		5	0.03	5	0.03	5	0.03	5
37		6	0.03	6	0.03	6	0.03	6
36		7	0.03	7	0.004038235	7	0.03	7
35		8	0.004038235	8	0.003863235	8	0.03	8
34		9	0.003863235	9	0.004038235	9	0.004038235	9
33		10	0.003863235	10	0.004038235	10	0.003863235	10
32		11		11		11	0.003863235	11
31		12		12		12		12
30		13		13		13		13
29		14		14		14		14
28		15		15		15		15
27	0.2	16	0.3	16	0.1	16		16
26		17		17		17		17
25		18		18		18		18
24		19	0.5	19	0.007	19	0.3	19
23	0.2	20		20		20		20
22		21		21		21		21
21		22	0.8	22	0.6	22	0.8	22
20		23		23		23		23
19	1.5	24		24		24		24
18		25	0.1	25	0.8	25	0.8	25
17		26		26		26		26
16		27		27		27		27
15		28	0.2	28	0.3	28	0.1	28
14	2.7	29		29		29		29
13		30		30		30		30
12		31	0.2	31	0.3	31	0.3	31
11		32		32		32		32
10		33		33		33		33
9	2.7	34	0.4	34	0.4	34	0.4	34
8		35		35		35		35
7		36		36		36		36
6		37		37		37		37
5		38		38		38		38
4	oling Unit (Est. Si	39						
3		40		40		40		40
2		41		41		41		41
1		42		42		42		42
	7.3		2.8		2.6		2.7	
	5		16	16			16	

We'll have 24 half cells distributed around the ring (96 racks)

Dual AC mains inputs: **Power:** 3-phase 400 VAC or 1-phase 230 VAC **Control:** 1-phase 230 VAC from UPS to energize the control and regulation part.

In case of mains outage on the power line, the control remains active to monitor the power supply and keeps it connected to the control system.

Dipoles:

currents and voltages are compatible with highperformance products on the market. Winner of the CFT was RTI OCEM-CAENels with their NGPS power converter. Expected size is standard 19", 3U.

(fast) Correctors, Skew Quadrupoles and ID corr.coils:

this power converter shall be an "in-house" development. 4-Quadrant operation, 25 A max. Expected size is standard 19", 1U high

the power part has $f_s=100$ kHz and 4^{th} order output filter, plus 2 SFP ports for the FOFB

Stability test 8h

(50 and 20 ppm spec.requirement)

Current Ripple measurements @ 5 Adc

residual noise from DCCT transducer

Miguel, how can we get rid of it?

Multipoles:

in-house development, about 75% of all power supplies.

Expected size is 2U high.

It uses two converters of the same kind of the corrector power supplies, 4^{th} order output filter, fs=100 kHz, interleaved drive

Waiting for the power parts to be delivered

Fast Link PS (courtesy G.Gaio controls group)

https://accelconf.web.cern.ch/icalepcs2019/papers/mopha044.pdf

An article will be presented at ICALEPCS2023

Fast Link PS

Fast link setting rate: 100kHz

60Hz square waveform on old magnet, PID not optimized

PS follows the setpoint

The magnet has 30mH inductance

Fast Link PS

TOF Ethernet packet Jitter measured by an external analyzer configured in pass-through at 100 kHz setting. Period: **10000 ns +/-100 ns** (hard real-time PS setting)

Reliability/Availability RAMI

Reliability is achieved with a sound design of the device Availability is defined as:

 $PS Availability = \frac{Actual \, Operable \, Time}{Expected \, Operable \, Time}$

Operable time depends on:

MTBF, number of operating devices, MTTR (recovering operation from a faulty device).

Redundancy increases the operable time but:

- modules, cost and complexity increase
- increase of "volume" (space is also critical @ Elettra 2.0)

Reliability/Availability RAMI continued

System Prognostics

Maintainability RAMI

Any faulty in-house designed unit will be repaired in the laboratory.

Faulty units are easy to fix, having the same control and regulation cards both for the 100 A and the 25 A types.

This helps manage the spares in numbers, types and budget.

Inspectability RAM

The power supplies shall be equipped with local display and remote diagnostics, as well.

Status of the power supplies should be easily accessible Unambiguous indication on the operability of the power supplies and, in case, describing the fault(s) preventing operations.

Separate AC mains from UPS for the control part: in case of a power failure the control of the power supplies remains responsive.

Schedule

Today

www.elettra.eu