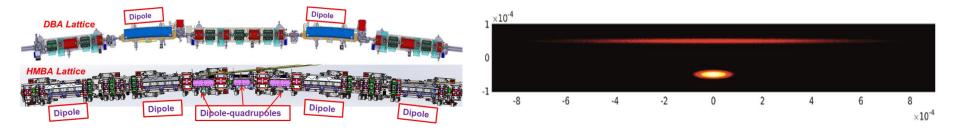
POCPA 7

31rst May – 2nd June 2023

Reliability of ESRF power supplies and Hotswap System L. Jolly

On behalf of the ESRF Power Supply Group



The European Synchrotron


- Extremely Brillant Source (EBS) Upgrade
- Overview of Storage Ring Main Power Supplies
- Evolution of PS reliability 2020-2023
- Hot Swap Redundancy System

THE EBS UPGRADE (DEC 2018 – DEC 2019)

- Old DBA lattice replaced with a new HMBA lattice to increase X-ray beam brilliance and coherence by a factor 100
- Replacement of old SR magnets with 864 new magnets
- Installation of 1056 new main PS rated 4kW (single type of design) for
 - 96 x Dipole-Quadrupole combined magnets
 - 512 x Quadrupole
 - 192 x Sextupole magnets
 - 64 x Octupole magnets
- Hot Swap Redundancy System to keep PS system reliability same as previous machine (<4 beamloss per year ??)

DQ Magnet

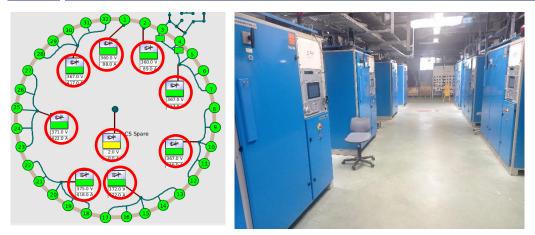
Quad Magnet

Sextu Magnet Oc

tu Mager

Page 3 POCPA 7 – 1rst June 2023 - JOLLY

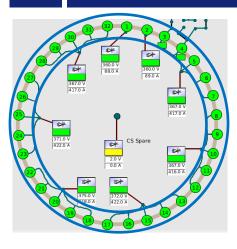
MAIN MAGNETS: POWER CONVERTERS ARCHITECTURE



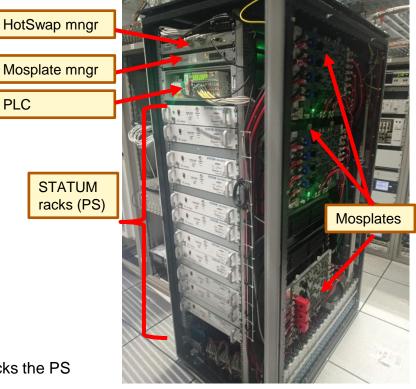
Magnet powered using 2-stages power conversion system

- AC/DC (400V AC => 360V DC) conversion: Common Sources 360Vdc (8+1 PS)
- Total 8 off 360Vdc network distributed all along the technical gallery
- DC/DC magnet PS: STATUM PS (864 PS running+ 192 PS stby)

MAIN MAGNETS: COMMON SOURCE 360V CONVERTER (CS-360VDC)

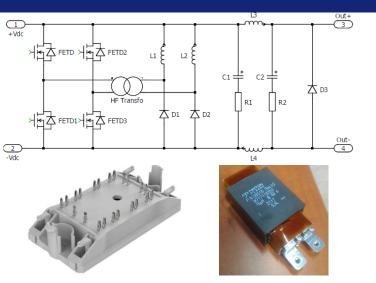

Function: Elec sources of 360Vdc networks powering downstream 4kW magnet PS

- 8 converters in operation + 1 spare for cold redundancy
- Switching matrix to quickly replace a faulty converter with the spare (<30min)
- 12 pulse thyristor rectifiers with passive LC filter, Water-cooled
- 2 sizes: 200kW (feeding 135 magnet PS) / 40kW (feeding 27 magnet PS)
- Inherited from the old ESRF machine (used as magnet family PS since early 1990's) BUT control upgraded in 2019 with digital regulation (PLC + DSP + FPGA)

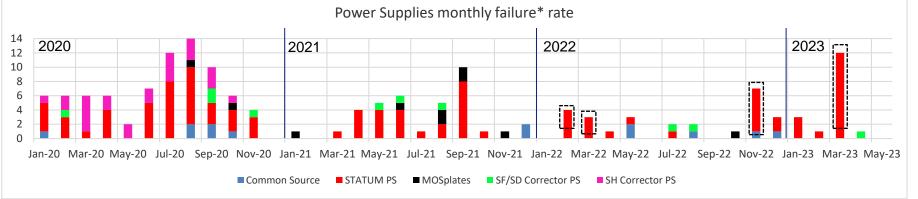

MAIN MAGNETS: HOTSWAP CUBICLE (HSC)

		Cell 27	,	
	HSM	CUBICLE INTERLOCK	MAGNET INTERLOCK	
oE D	QF6B	QF1A	QD2A	Rack
oE D	QF8B	QD3A	QF4A	Rack
oE D	QF8D	QF4B	QD5B	Rack
oE D	QF6D	QD5D	QF4D	Rack
oE D	Qspare1	QF4E	QD3E	Rack
oE D	Qspare3	QD2E	QF1E	Rack
oE D	Qspare2	SD1B	SD1D	Rack
oE D	SD1A	SD1E	Qspare4	Rack
oE D	SF2A	SF2E	OF1B	Rack
oE D	DQ1B	DQ2C	spare	Rack
oE D	DQ1D	DQspare	OF1D	Rack

Standard cubicle (800mmW x 1200mmD) for all 32 cells, containing


- 33 x PS channels
 - 27 x PS feeding magnets
 - 6 x standby PS for hot redundancy
- A PLC monitors the magnet safety (flow/temp switches) and interlocks the PS
- A hot swap system monitoring magnet current and swapping PS in case of current deviating from declared setpoint
- All above devices controlled by TANGO with Ethernet links

MAIN MAGNETS: MAIN (STATUM) PS


One crate containing 3 PS channels rated 33Vdc / 120Adc / 4kW each

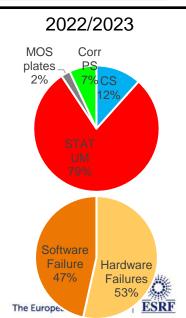
- Designed and manufactured by COMECA Power (France)
- Water-cooled, Zero Voltage Switched PWM converter + planar magnetics => high efficiency and power density (3 x 4 kW in a 19" wide - 2U high - 750mm deep crate)
- DSP based digital regulation using MAC150 DCCT => current stability < 20ppm
- Remote communication links: (Slow) Ethernet and (Fast) CANbus links
- Control Electronics is Powered Over the Ethernet (PoE) from the Ethernet switches using Ethernet cable
- Easy rack-in/out mechanism (Combitac elec. connector + water hose quick connect) => rack replaced in few minutes

Page 7

STORAGE RING PS RELIABILITY (PSG PERSPECTIVE)

(*) hardware failure or software/communication malfunction

- 2020: Firefigthing period, high failure rate => stock of spare STATUM PS running dangerously low!
- 2021: In-house repair of STATUM + Fixing STATUM firmware problem + Development of Hotswap Control
- 2022: End of infant failure phase + Improvement of STATUM firmware + Development of Hotswap Control
- 2023: Activation of hotswap system

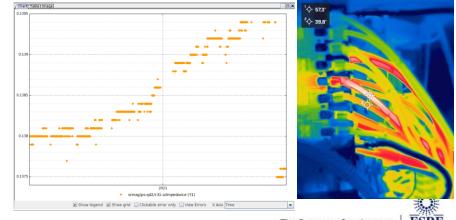

REX of 2022/23 period - Factors having a significant impact on PS failure rate:

"Shutdown effect" on PS hardware reliability

- 33% of all hardware failures occurred right after / during shutdowns (8 failures)
- Stressful environment for electronics (cycling of main and auxiliary power)

Release of new STATUM software version introducing/revealing latent bugs:

- 20 events, accounting to almost 50% of all PS failures.
- Recurring difficulties in proofing in the lab a new version with 100% confidence


RELIABILITY ISSUES

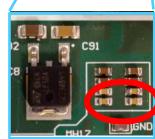
STATUM

- · Bugs in embedded software of Channels' DSPs and Rack's Interface Controllers
 - · Random hiccups (trip by overcurrent) of PS channels when starting or stopping
 - Large error in magnet current regulation in some conditions
 - Communication board crippled with problems (Eth link unreliable, NTP synchronization crashing)
- Hardware reliability issues
 - Design issues: PoE stage ill-designed leading to a cascade of problems (control electronic not starting, boards failure, loss of calibration parameters)
 - Quality issues: Electronic board failures, Loose electrical connections, Water leaks, ...
 - · Unexplained incident: fuses blowings, EMIs, and many others

HOT Swap Cubicles

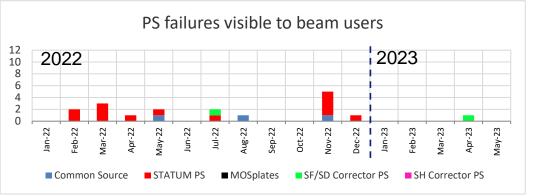
- Total of >6000's of electrical power connections
- Live magnet resistance monitoring allowed detecting just in time quite a few loosely crimped cables overheating
- ⇒ Crimping and retighten of the lugs before failure

The European Synchrotron


RELIABILITY ISSUES

MOSPLATES

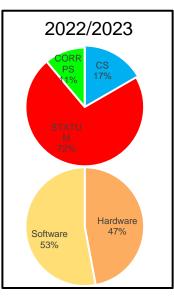
- From June 2021 MOSplates started failing at a rate of about 1 per month (Power MOSfet suddenly turning off disconnecting PS from magnet!)
- Rootcause identified: Premature failure of tiny filtering capacitors
 => Modification campaign in Winter 2021 to unsolder capacitor from MOSplate (640 capacitors!)



- Crash of the rack's µcontroller, freezing the PS's current setpoint
- 2-3 crash per month, almost never twice on same rack over a 10 month period!
- Strong suspicion that these crash were caused by the environment, more specifically the Ethernet link.
- Rootcause found with help of Network team: bad auto-negociation of Ethernet link at start-up
- => reconfiguring the CISCO Ethernet switch to force the Eth link to full-duplex mode solved the issue.

STORAGE RING PS RELIABILITY 2022-23 (BEAM USERS' PERSPECTIVE)

Excluding failures that happened during shutdown (SD) and associated restart period


=> 18 failures "only" visible to users these last 18monthes

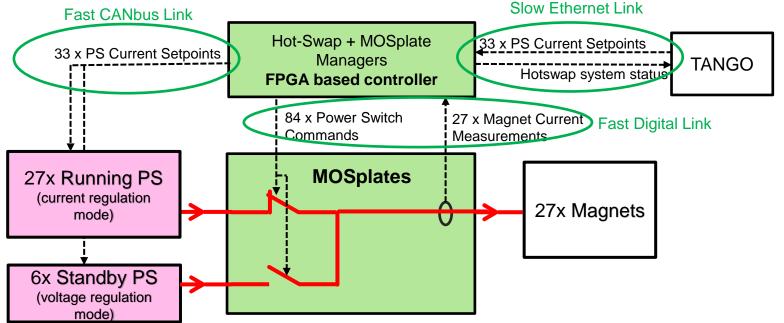
For comparison, MTBF of old ESRF machine (period 2007-2014) was

- 2400h for Main PS System (total of 14 PS)
- 2300h for Corrector PS System (total of 410 PS)

Note: no impact of Hotswap system on accelerator reliability so far, see next slide.

Main PS System	MTBF [h]
8 x CS 360Vdc	3200
864 x Main PS (STATUM)	738
32 x Hotswap system	No Failure
Overall System	600
Corrector PS System	MTBF [h]
Corrector PS System	MTBF [h] No Failure
2 x CS 48Vdc	No Failure

The European Synchrotro


HOTSWAP SYSTEM: ARCHITECTURE

Function

Automatically swaps a faulty PS with a healthy one without noticeable drop in magnet current

- · PS Fault detection by comparing magnet current setpoint and current measurement
- "Hot" disconnection / reconnection of power supplies from/to magnet via a matrix of power MOSfet switches

Architecture (for one cell)

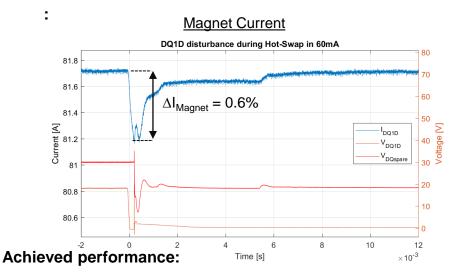
HOTSWAP SYSTEM: BUILDING BLOCKS

Hotswap and Mosplates managers

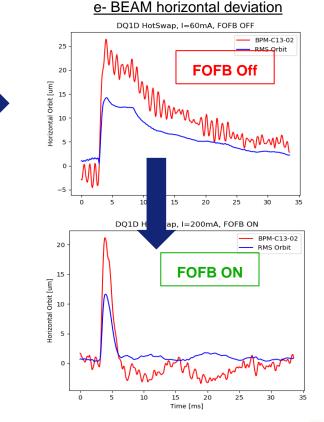
=> the low level fast controller of the system, ensuring the following functions

- Hotswap sequencer
 - Monitors magnet current and initiate hotswap if departure from setpoint (0.15% for DQ mag, 5% for Quad mag)
 - Send voltage and current setpoints to spare PS (+ PI current regulator gains)
 - Ask MOSplates to disconnect faulty PS from Magnet and connect spare PS instead
- Communication with TANGO (remote control)
 - TANGO->HSM (Command):
 - Current Setpoints
 - Hotswap inhibition command
 - HSM -> TANGO (Feedback to user)
 - system status, alarms/events history
 - · current waveform recordings for post mortem analysis

HOTSWAP SYSTEM: BUILDING BLOCKS


MOSPlates (power part)

- Water cooled electronic board 500mmx350mm
- 4 channels rated 120A to feed 4 magnets, from 4 running PS and 2 standby PS
- 12 pairs of MOSfet switches + FW diodes
- Current sensors (Hall Effect current sensors or DCCT)
- FPGA control circuit for communication link with MOSplate managers and control of MOSFET



HOTSWAP SYSTEM: PERFORMANCES

Switching off manually DQ1D PS (simulation of PS failure) – stored electron beam current at 60mA

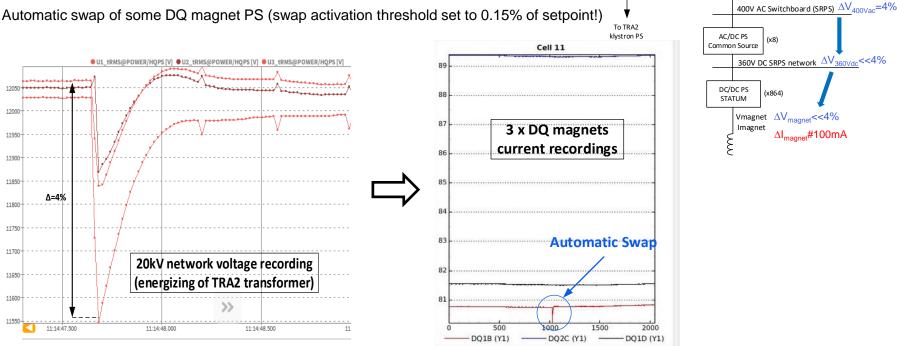
- ΔI Magnet = 0.6%, ΔB Magnet = ????
- No beam loss, Δx Beam = 30um / 2ms (with FOFB turned ON)
- Performance in terms of ΔI Magnet limited by
 - Magnet's electrical time constant (di/dt)
 - Hotswap manager reaction time (#100us)
 - PS's voltage regulation bandwidth (150Hz => #1ms)
- Impact on Beamlines (X-ray beam deviation) unknown at the moment

HOTSWAP SYSTEM: STATUS

Status

- System in service since 16 Jan 2023, covering the 576 Quad and DQ magnets
- Manufacturing of additional MOSplate to cover the 192 Sextupoles in progress since Jan 2022 (heavy delays due to shortage of electronic components)

Return of experience after 4 months operation in User Service Mode (USM)


- No negative impact of HOTSWAP system on accelerator reliability so far
- Unfortunately, no main PS failure in USM in 2023 => no chance yet for proving hotswap system's added value
- Yet some unexpected swaps did occur in USM.... caused by disturbances coming from the 20kV AC network!
 - Energizing of large ESRF transformer
 - · Incidents on Grenoble utility grid

ONGOING PROJECTS: HOTSWAP SYSTEM (SENSITIVITY TO 20KV GRID STABILITY)

Energizing of large ESRF transformers

- 1. Large Tx inrush current causes transient voltage dip on the 20kV electrical network
- 2. Voltage dip propagates down to the main PS output voltage
- 3. Automatic swap of some DQ magnet PS (swap activation threshold set to 0.15% of setpoint!)

Mitigated by precise calibration of all current sensors of the Hotswap System / high BandWidth of PS current regulation

G

20kV AC network $\Delta V_{20kVac} = 4\%$

Transfo SRDC

20kV/400V

2000 kV A

(x8)

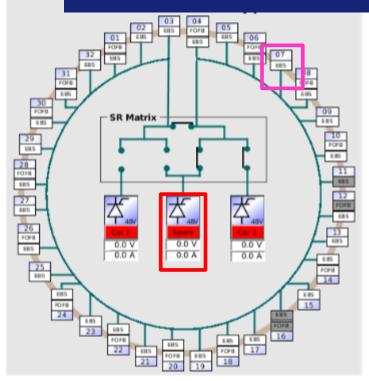
(x864)

 ΔI_{magnet} #100mA

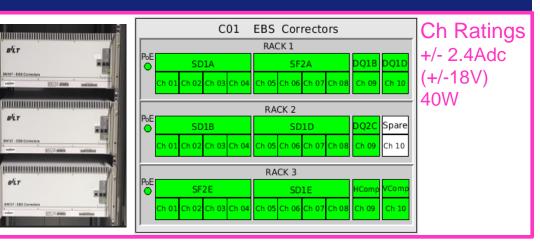
Inrush Current

Fransfos SRRF

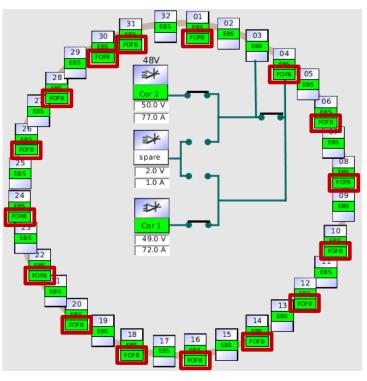
20kV/4x750V

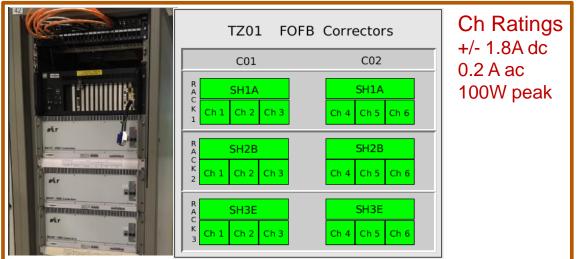

2700 kV A

MANY THANKS FOR YOUR ATTENTION



SEXTU AND DQ CORRECTORS: CS-48V AND DC CORRECTOR PS (BILT EBS)


Corrector Magnet powered using 2-stages power conversion system


- Common Source 48Vdc : 400V AC => 48Vdc (2 + 1 PS)
- One single 48Vdc distributed network
- DC Corrector PS : DC/DC magnet PS (864 PS)

SH CORRECTORS: DC+AC CORRECTOR PS (BILT FOFB)

Total number of DC + AC Corrector PS

294 channels in operation (housed in 48+1 racks of 6 channels)

