The Sirius Power Supplies Reliability Scenario

Power Converters Group – CoP

Bruno Edson Limeira

- 1. CNPEM and DAT
- 2. Sirius Overview
- 3. Power Supply System Reliability
- 4. In-house PSs
- 5. Off-the-shelf PSs
- 6. Conclusion

- 1. CNPEM and DAT •

1. CNPEM and DAT

The Power Converters Group - CoP

Group Leader

└→ Bruno Edson Limeira

Engineers

Felipe Santiago P de Oliveira
 William Contesini
 Leandro de Oliveira Porto

Technicians

Gustavo Machado Rogatto
 Gustavo Rodrigues de Oliveira
 Gabriel Fernandes dos Santos

Trainee

└→ Lucas Carnevalli de Almeida

1. CNPEM and DAT

ϲͷϼͼϻ

• 1. CNPEM and DAT

- 2. Sirius Overview
- 3. Power Supply System Reliability
- 4. In-house PSs
- 5. Off-the-shelf PSs
- 6. Conclusion

MINISTRY OF SCIENCE TECHNOLOGY AND INNOVATION

2. Sirius Overview

Parameter	Today	Phase 1 (end of 2024)
Beam energy	3.0 GeV	3.0 GeV
Current	100 mA	350 mA
Injection mode	top-up	top-up
Beam stability	$\begin{array}{l} \sim 1\% \ \sigma_{x} \\ \sim 4\% \ \sigma_{y} \end{array}$	< 10% σ
Beamlines (in oper.)	6	14

Critical systems	Today	Phase 1
RF cavities	• 1 NC Petra7 cell	• 2 SC CESR type • 3HC (1.5 GHz)
RF power	• 120 kW SSA	• 480 kW SSA
FOFB	 rate = 48 kHz crossover = 400 Hz 	 rate = 96 kHz crossover = 1 kHz
Insertion Devices	 Commissioning APUs IDs from old SR (UVX) EPU Wiggler 	 APUs In-vacuum Vertical polarization Delta (in-house) Apple-II

Delta Undulator

MINISTRY OF SCIENCE TECHNOLOGY AND INNOVATION

2. Sirius Overview

May 2023

Sun Mon

Janu	January 2023								
Sun	Mon	Tue	Wed	Thu	Fri	Sat			
1	2	3	4	5	6	7			
8	9	10	11	12	13	14			
15	16	17	18	19	20	21			
22	23	24	25	26	27	28			
29	30	31							

Tue Wed Thu

Fri

Sat

February 2023 Sun Mon Tue Wed Thu Fri Sat

June 2023									
Sun	Mon	Tue	Wed	Thu	Fri	Sat			
				1	2	3			
4	5	6	7	8	9	10			
11	12	13	14	15	16	17			
18	19	20	21	22	23	24			
25	26	27	28	29	30				

21	22	23	24	25	26	27			
28	29	30	31						
September 2023 Octobe									
Sun	Mon	Tue	Wed	Thu	Fri	Sat			

Sun	Mon	Tue	Wed	Thu	Fri	Sat				
1	2	3	4	5	6	7				
8	9	10	11	12	13	14				
15	16	17	18	19	20	21				
22	23	24	25	26	27	28				
29	30	31								

11 dias

1		

Acelerator Startup

			NOVE	mber	204
	Sat	[Sun	Mon	Tue
	7				
	14		5	6	7
	21		12	13	14
1		r i			

12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	30		

SIRIUS - 2023 SCHEDULE

Marc	March 2023								
Sun	Mon	Tue	Wed	Thu	Fri	Sat			
			1	2	3	4			
5	6	7	8	9	10	11			
12	13	14	15	16	17	18			
19	20	21	22	23	24	25			
26	27	28	29	30	31				

July 2023

Sun	Mon	Tue	Wed	Thu	Fri	Sat
						1
2	3	4	5	6	7	8
9	10	11	ER2LS 12	13	14	15
16	17	18	ER2LS 19	20	21	22
23	24	25	26	27	28	29
30	31					

November 2023 Wed Thu Fri Sat

28	29	30	
			R/

38 L I	5		

	Unatte	nded.
	Tunnel	closed

	runner	cioseu
65	dias	

17.8 %

100.0 %

versão 30/03/2023

Thu Fri

Sat

Wed

SIRIUS - DISTRIBUTION OF SHIFT HOURS IN 2023

Shift hours	2023	2022
Beam for users	4152	3360
Installations	1416	1968
Machine studies	1320	1296
No activity	1560	1608
Accel. startup	264	480
Radiation tests	48	48

August 2023

April 2023

Sun Mon Tue

Sun	Mon	Tue	Wed	Thu	Fri	Sat
		1	2	3	4	5
6	7	8	9	10	11	12
13	14	15	16	17	18	19
20	21	22	23	24	25	26
27	28	29	30	31		

December 2023

Sun	Mon	Tue	Wed	Thu	Eri	Sat
					1	2
3	4	5	6	7	8	9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30
31						

3.0 %

16.2 %

AD te unnel closed 2 dias

0.5 %

365 dias

SCIENCE TECHNOLOGY AND INNOVATION

2	3	4	5	
9	10	11	ER2LS 12	
16	17	18	ER2LS 19	

- 1. CNPEM and DAT
- 2. Sirius Overview
- 3. Power Supply System Reliability
- 4. In-house PSs
- 5. Off-the-shelf PSs
- 6. Conclusion

3. Power Supply System Reliability

Sirius uses Olog as maintenance

management tool, but not

optimized for it!

Very hard to create accurate maintenance statistics!

It is been studied to start using Jira Service.

Jira Service Management

3. Power Supply System Reliability

- ~750 Low Power PS (FBP)
- 45 High Power PS 54 modules
- 6 AC High Power PS

21 Output Stages

18 Input Stages

18 Rectfiers

- 40 Regatron PS for FAP DC-Link
- ~200 TDK Lambda PS SSA for RF system and DC-Links
- 23 BPM Power Supplies (Acopian)
- 16 Ion Pump PS for LINAC (Shanghai Sanjing)
- 48 Power Supplies for LINAC (SINAP)
- 20 PS for FOFB (8 channels each) Not maintained by CoP

→ Overall Reliability of 97,4%

UNITING AND REBUILDING

3. Power Supply System Reliability

- 1. CNPEM and DAT
- 2. Sirius Overview
- 3. Power Supply System Reliability
- 4. In-house PSs
- 5. Off-the-shelf PSs
- 6. Conclusion

We have three families of In-house Power Supplies:

- Low Power PS (FBP)
 - o 10 A/10 V
 - o Bipolar (4Q)
 - Uses Off-the-shelf PS as DC-Link
- High Power PS (FAP)
 - Up to 800 A and 800 V
 - Modular 225 A/400 V per module
 - o Monopolar (1Q)
 - Used only in Storage Ring
 - $\circ \quad \text{Uses Off-the-shelf PS as DC-Link}$
- AC High Power PS (FAC)
 - \circ $\,$ Up to peak 1000 A and 800 V $\,$
 - Modular 550 A/250V per module
 - o Bipolar (4Q)
 - $\circ \quad \text{Used only in Booster} \\$
 - All in-house developed

https://accelconf.web.cern.ch/ipac2019/papers/tupmp001.pdf

https://accelconf.web.cern.ch/ipac2019/papers/tupmp002.pdf

NPEM

We have three families of In-house Power Supplies:

- Low Power PS (FBP)
 - \circ 10 A/10 V
 - Bipolar (4Q)
 - Uses Off-the-shelf PS as DC-Link
- High Power PS (FAP)
 - o Up to 800 A and 800 V
 - o Modular 225 A/400 V per module
 - o Monopolar (1Q)
 - o Used only in Storage Ring
 - o Uses Off-the-shelf PS as DC-Link
- AC High Power PS (FAC)
 - o Up to peak 1000 A and 800 V
 - o Modular 550 A/250V per module
 - o Bipolar (4Q)
 - o Used only in Booster
 - o All in-house developed

Module

DC-Link TDK Lambda HWS1500

We have three families of In-house Power Supplies:

- Low Power PS (FBP)
 - o 10 A/10 V
 - o Bipolar (4Q)
 - o Uses Off-the-shelf PS as DC-Link
- High Power PS (FAP)
 - \circ $\,$ Up to 800 A and 800 V $\,$
 - Modular 225 A/400 V per module
 - o Monopolar (1Q)
 - Used in Storage Ring and Transport Lines
 - o Uses Off-the-shelf PS as DC-Link
- AC High Power PS (FAC)
 - o Up to peak 1000 A and 800 V
 - o Modular 550 A/250V per module
 - o Bipolar (4Q)
 - o Used only in Booster
 - o All in-house developed

DC-Link Regatron TopCon Quadro

Power Module

MINISTRY OF SCIENCE TECHNOLOGY AND INNOVATION

We have three families of In-house Power Supplies:

- Low Power PS (FBP)
 - o 10 A/10 V
 - o Bipolar (4Q)
 - Uses Off-the-shelf PS as DC-Link
- High Power PS (FAP)
 - o Up to 800 A and 800 V
 - Modular 225 A/400 V per module
 - o Monopolar (1Q)
 - o Used only in Storage Ring
 - o Uses Off-the-shelf PS as DC-Link
- AC High Power PS (FAC)
 - \circ $\,$ Up to peak of 1000 A and 800 V $\,$
 - Modular 550 A/250V per module
 - o Bipolar (4Q)
 - $\circ \quad \text{Used only in Booster} \\$
 - All in-house developed

18/31

Internal Interlock Board

- In-house development
- 2 channels of +15 V for driver supply;
- 4 channels of isolated current measurement input;
- 3 channels of isolated voltage measurement input;
- 12 General Purpose Digital Output;
- 4 General Purpose Digital Input;
- 4 PT100 inputs;
- 4 non-insulated voltage measurement input;
- CAN communication;

Failures:

- → Problem with CAN communication due to poor implementation (solved in 2021)
- → Inverted cables in the CAN cable
- → Problems with PT100 measurement in some modules (EMI issues)
- → Problems with JTAG cables (EMI issues)

Digital Regulation System (DRS)

- In-house development
- Used in every in every in-house developed PS
- 18 bits resolution
- Up to 4 High Resolution ADC
- Up to 16 PWMs (optical fiber)
- RS-485 and CAN communication

Failures:

→ Fault in the Ethernet IC -> Necessary to remove the IC from 326 boards!

Capacitor Bank

- 3 different models
 - 1.3 F/ 305 V 25 capacitors of 52 mF/305 V in parallel (Felsic Capax 761438)
 - 725 mF/ 400 V 25 capacitors of 29 mF/ 400V in parallel (Kendeil K11S)
 - 1.18 F / 100 V 25 capacitors of 47 mF / 100V in parallel (EPCOS B41456)
- Have a fuse connected in series for protection

Failures:

→ Capacitor explosion – due to dust between the copper plates (hypothesis...) → We've added polycarbonate protection in these capacitor banks

Capacitor Bank

- With top-up operation, the Booster PS are now operating all the time, hence the capacitor are in a more demanding scenario
- We are testing the possibility to let the PS ramping only during injections (every 3 min)
- We still don't have estimative of the lifetime of the capacitors
- We still don't have thought about the logistic of spare parts storage.

- 1. CNPEM and DAT
- 2. Sirius Overview
- 3. Power Supply System Reliability
- 4. In-house PSs
- 5. Off-the-shelf PSs
- 6. Conclusion

TDK Lambda

~200 units in operation 0 failures until now! 6

Regatron

Used as DC-Link for Storage Ring PSs

4 different models

- 100 V
- 130 V
- 200V
- 400V

Magnet PS	400 V - 100 A Model	200 V - 200 A Model	130 V - 308 A Model	100 V - 400 A Model
		PA-RaPSD01:PS-DCLink-1A		
		PA-RaPSD01:PS-DCLink-1B		
		PA-RaPSD01:PS-DCLink-3A		
		PA-RaPSD01:PS-DCLink-3B		
		PA-RaPSD03:PS-DCLink-2A		
		PA-RaPSD03:PS-DCLink-2B		
		PA-RaPSD03:PS-DCLink-4A		
Dipolos		PA-RaPSD03:PS-DCLink-4B		
Dipoles		PA-RaPSD05:PS-DCLink-1A		
		PA-RaPSD05:PS-DCLink-1B		
		PA-RaPSD05:PS-DCLink-3A		
		PA-RaPSD05:PS-DCLink-3B		
		PA-RaPSD07:PS-DCLink-2A		
		PA-RaPSD07:PS-DCLink-2B		
		PA-RaPSD07:PS-DCLink-4A		
		PA-RaPSD07:PS-DCLink-4B		
		PA-RaPSA01:PS-DCLink-QFAP		
	PA-RaPSA01:PS-DCLink-QFB			
				PA-RaPSA03:PS-DCLink-QDAP
		PA-RaPSA04:PS-DCLink-QDB		
			PA-RaPSA06:PS-DCLink-Q13A	
Quadrupoles			PA-RaPSA06:PS-DCLink-Q13B	
			PA-RaPSA06:PS-DCLink-Q13C	
			PA-RaPSA07:PS-DCLink-Q24A	
			PA-RaPSA07:PS-DCLink-Q24B	
			PA-RaPSA07:PS-DCLink-Q24C	
			PA-RaPSB01:PS-DCLink-SDAP0	
		PA-RaPSB01:PS-DCLink-SDB0		
			PA-RaPSB03:PS-DCLink-SFAP0	
		PA-RaPSB03:PS-DCLink-SFB0		
			PA-RaPSB04:PS-DCLink-SDA12	
		PA-RaPSB04:PS-DCLink-SDB1		
			PA-RaPSB05:PS-DCLink-SDA3SFA1	
Sextupoles		PA-RaPSB05:PS-DCLink-SDB2		
			PA-RaPSB07:PS-DCLink-SFA2SDP1	
		PA-RaPSB07:PS-DCLink-SDB3		
			PA-RaPSB08:PS-DCLink-SDP23	
		PA-RaPSB08:PS-DCLink-SFR1		
			PA-RaPSB10:PS-DCLink-SFP12	
		PA-RaPSB10:PS-DCLink-SFR2		
Quantity	1	25	13	1

CNPEΜ

MINISTRY OF SCIENCE TECHNOLOGY AND INNOVATION

Regatron

Used as DC-Link for Storage Ring PSs

4 different models

- 100 V
- 130 V
- 200V
- 400V

Damage in some capacitors:

- Recurrent event that happened in the Storage Ring Dipole PS
- Some of the capacitor were badly damaged due to overtemperature
- Regatron did not solved the problem
- The problem was solved by adding one other capacitor in parallel (we suggested it and bought the capacitors...) and adding drills in the cover
- Since them, the PS room is operating with ~18°C ambient temperature

MINISTRY OF SCIENCE TECHNOLOGY AND INNOVATION

Regatron

Used as DC-Link for Storage Ring PSs

4 different models

- 100 V
- 130 V
- 200V
- 400V

Overtemperature in the output inductors:

- The inductors heat to the point that the gap of the core melts
- The inductor uses silicon steel sheets for its core (not ferrite)
- We measured a ripple of 80 Appk at switching frequency (20 kHz)
- Regatron says the problem is the refrigeration of our racks
 - We've measured the temperature in the inductors of some PSs in operation (worst cases)
 - We've measured in one
 PS outside of the rack and
 the core reached ~70°C

Regatron inductors temperature measureme

СИРЕШ

nductor temperatura - front doors closed [ºC] 🔳 Inductor temperatura - front doors open [ºC] 📕 Inductor temperatura - SFP12 with external fan [ºC]

PS for the BPMs racks

- One PS has 3 power modules in parallel
- Redundant (should be...)
- Recurrent problem of current distribution between modules
- Don't have remote monitoring
- One unit was the cause of **108 failures** in one BPM rack in one week!
- Acopian said the problem was calibration, but it wasn't
- Several project errors found in the PS:
 - Low impedance connected in the voltage and current measurement channels.
 - Reference connections not done properly
 - Control of the output voltage done via feedback measurement
 - Some resistor from the display voltage divider resistors shorted by tracks in the PCB
- The problems are been solved (by us) and remote monitoring board is been developed

- 1. CNPEM and DAT
- 2. Sirius Overview
- 3. Power Supply System Reliability
- 4. In-house PSs
- 5. Off-the-shelf PSs
- 6. Conclusion

6. Conclusion

- It is a problem not to have a good maintenance management tool from the beginning
- Our PS system is showing good reliability
- We should have paid more attention on off-the-shelf equipment tests
- Maintenance of off-the-shelf equipment is not easy (black-box)
- It would be better to use PLC for the internal interlock system
- We plan enhancing and expanding the maintenance teams for Sirius (not only for power supplies)

Thank you

Bruno Edson Limeira bruno.limeira@cnpem.br +55 (19) 3212-1160

cnpem.br

MINISTRY OF SCIENCE TECHNOLOGY AND INNOVATION

