PAUL SCHERRER INSTITUT

Power Electronics-Engineering :: Paul Scherrer Institut (PSI)

PS for SLS2

Hans Jäckle, David Clavier, Leander Neumann, Simon Richner, Beat Ronner

Pocpa 2023, Wiener Neustadt

- 5A, 20V, 4Q power supply with controller & shunt current measurement on one PCB
- Up to 36 fit into one 19'' rack
- Figure of merit: Noise & ripple (0..10 kHz) < 5 ppm RMS (with inductive load)

XSPS Power part: Challenge 1

5.6

 5.4

uBootstrap FET2
uBootstrap
4.8

4.6

 44 -2.5

 -2

 -1.5

 -1

Figure 10. Functional Block Diagram

Problem:

- FET Halfbridge module LMG5200 has an internal bootstrap-supply for the supply of the driver of the upper FET
- This supply is implemented as 2-point (bang-bang) controller
- The frequency of this 2-point controller could be seen as 16 .. 34 kHz component on the output voltage

uBootstrap and uXSPSOut (C1XSPSProtoPower00085.txt)

 -0.5

 $\mathbf 0$

 $t[s]$

 0.5

 \overline{c}

 1.5

 2.5

 $\times 10^{-4}$

XSPS Power part: Challenge 1

Solution:

• Made own, LDO-based bootstrap-supply for upper FET

Before After

For SLS2.0, only two 1Q configuration of the 200 A PS is needed:

- 200A, 23V, 1Q (for «normal» magnets)
- 200A, 7V, 1Q (for superconducting magnets)

In course of the project, also a

• 200A, 120V, 4Q configuration

has been developped and tested.

One item that needed some focus during the development of the 200 A PS was the output inductors: The first inductor had a rather high coupling capacitance between the windings, which showed up in high peaks on the output voltage in the switching moments.

Change of the inductor alone helped, but did not solve the problem completely.

The 2nd contribution was the layout of the «minus» busbar:

- In the first version, the minus was connected back to the input This made that all the loop currents of the first filter stage took their path over the output
- In a 2nd version, the minus busbar was connected as in the picture on the left side, which improved the situation

«Minus» connections in the first version, but «improved» with a cable.

Develop the same PCB to achieve either:

- 50A / 72VDC unipolar power supply
- PS 70A / 28 VDC unipolar power supply
- PS 50A / 72 VDC bipolar power supply

The same passive components can be used for all 3 different power supplies versions.

The 50A bipolar version is finally not required for SLS 2 but will be used later in another facility.

Description & Achievements

Specification:

- Topology: 100 kHz hard-switching buck chopper design using Microsemi FREDFET and Schottky diodes.
- Realization: Full PCB design
- Features:
	- I2C bus for redundant fans control and temperature monitoring.
	- Input & output passive current filtering.
	- Notch filtering of PWM frequency.
	- Built-in controller card.
	- Overvoltage protection for the bipolar topology.

Achievements:

- Output voltage ripple: Damping ratio <-63 dB (7.10⁻⁴).
- Current ripple : 100-150 ppm rms ripple on a resistive load, \approx 85 ppm rms on an inductive load
- 96 % efficiency for the 50A version and 93 % for the 70A
- I2C bus for temperature monitoring and fans control operating flawlessly.

Power supply block diagram

PS 50/70A: Challenge Crosstalk

- Due to high passive filter efforts and high current, long PCBs (400mm) are necessary.
- Avoid long paralleled routes of power and signal nets.
- Solution: "Exit" paths of signal lines in Z-axis by using two backplanes:
	- − Backplane for power connections
	- − Midplane for critical signals to controller DPC2-CC
- Noisy high power circuits (MOSFET, filter inductors etc.) and signal circuits are separated on different PCB sides.

Y/R: V_{DS} switching – B: DCCT shunt voltage Current absolute error vs. setpoint

Issues:

- High dv/dt commutation edges of MOSFET in conjunction with abrupt recovery effect of the free-wheeling body diode are leading to high frequency ringing of the commutation cells.
- Commutation noise is coupling into the auxiliary power supplies and ultimately in the DCCT control signal.
- The DCCT signal noise can cause inaccuracy in the output current when the sampling of the signal occurs simultaneously with the switching

- Relatively big MOSFET package results in higher parasitic inductance.
- Overall commutation loop through high- and low-side FET die is large.
- Parasitic inductive loop increases MOSFET drain-to-source peak voltage spike and SW node ringing.
- Reverse recovery effect of MOSFET parasitic diode was highly noticeable and interacts with parasitic inductance.

Solutions:

- Partial issue mitigation is done using series and freewheeling schottky diodes to bypass the body diode.
- For a given current working point, shifting the sampling clock with respect to the PWM clock helps overcoming the instability.

- Improve filter performances (common mode & DCCT signal)

Half-bridge arrangement for 4Q

- High dv/dt at switch node of MOSFET needs a careful layout.
- Design tradeoffs between high current support and small SW copper areas.
- Uncertainities:
	- − Keep it away from other copper planes and traces, minimize capacitive coupling?
	- − GND planes below SW node area for defined return current path and therefore higher capacitive coupling?
	- − «Sandwich» structure: SW node between DC-link planes?

Controller Card – DPC2-CC

3rd Generation of Digital Power Supply Controller

ELETTE DPC vs DPC2: Main differences

DPC2-CC: Summary I/O

DPC2-CC: Temperature Drift

Amplifier with external Resistor Network

- Gain Drift 1.7ppm/°C, expected 0.2ppm/°C
- Unclear correlation with feedback resistance

Temperature Drift vs Feedback Resistor

Use fixed gain amplifier with higher noise but actual gain drift 0.2ppm/°C (n=1)

Wir schaffen Wissen – heute für morgen

Problem 1:

• Parasitic C of TVS-Diodes at output form an oscillation loop with LCM,EMV and C1CM,o / C2o

Solution 1:

• Provide damping legs (for CM and DM)

Problem 2:

- All the C in the output (after the current-measurement) form sort of a Dpart in the current control loop)
- This limited the bandwidth of the current control loop

Solution 2:

- Leave TVS-diodes and damping legs away for series
- Provide footprint for TVS-diodes with lower capacitance values

PS 50/70A: Challenge EMI

- High dv/dt and di/dt due to hard switching MOSFETs.
- Heatsink mounted to MOSFETs sees capacitive coupled noise.
- Different approaches tested:
	- − Heatsink connected to PE
	- − Heatsink connected to DC-
	- − Heatsink floating
- Expectation: Heatsink connected to PE via 0Ω should be the best solution.
- Test results: Heatsink connected via 100kΩ to PE showed less noise.