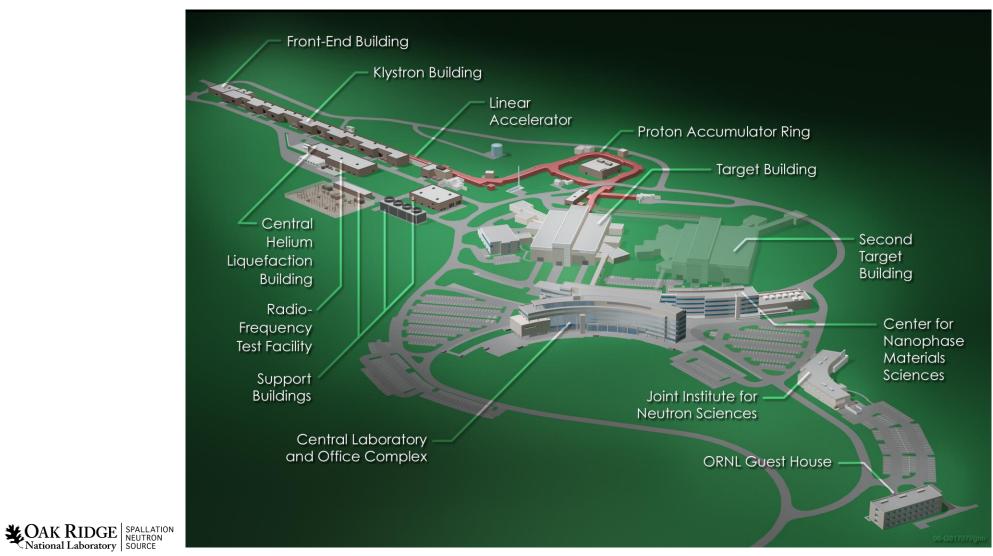


Cold Plate Upgrade at the SNS

Yugang Tan Dave Anderson, Charlotte Barbier, Ben Goddard June 1st, 2023

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

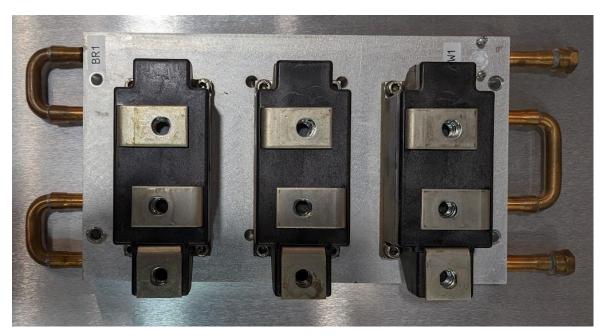
POCPA7

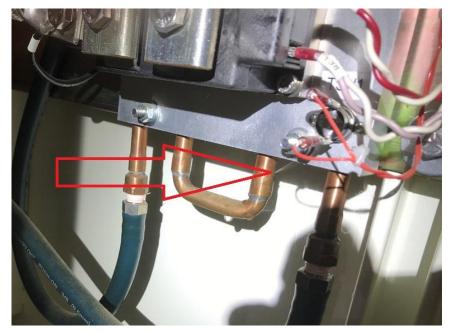

Contents

- SNS
- Cold Plate Water Leak
- Cold Plates Evaluation
- Replacement Campaign
- Summary

SNS

- Produces high intensity pulsed neutrons for scientific research and industrial development.
- Operations began in 2006. Availability goal 90%.


SNS Beam Animation



Cold Plate Water Leak

- A cold plate is used to cool power semiconductor devices and made of an aluminum plate with copper tube.
- Deionized (DI) water corrodes copper, causing pin hole leak.
- Corrosion rate could be 50µm/Year*.

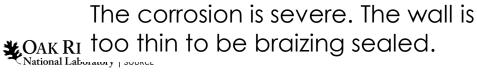
Cold Plate with SCRs

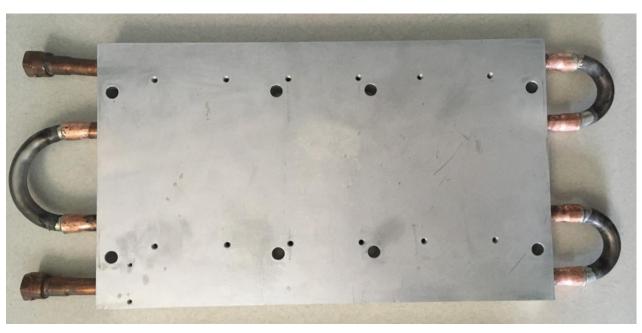
Pin Hole Leak

* Corrosion of Copper by Deionized Cooling Water, H Scholer, etc, EPAC, 1988

Water Leaks in Recent Years

• Cold plate water leak caused many hours of downtime, especially in FY 21 and FY22.




CAK RIDGE National Laboratory

Repair : A Temporary Solution

- It is more than pin hole damage.
- Repair is a temporary remedy.

A repaired cold plate with stainless steel U-bends.

New Design: Permanent Solution

cole-Parmer* an antylia scientific company

Use Stainless Steel (SS) as cooling tube.

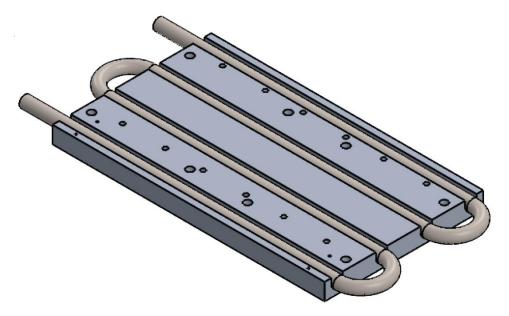
Advantage: SS304 is rated excellent in DI compatibility.

Disadvantage: SS304 doesn't conduct heat as well as copper. The cold plates with SS tube may operate at a higher temperature than ones with copper tube.

Material	Thermal Conductivity (W/m*K)
Copper	386
SS 304	16.3

Home \mid Product Support \mid Chemical Compatibility Database

Chemical Compatibility Database


MATERIAL	COMPATIBILITY	Ratings - Chemical Effect
		A - Excellent
	A ¹ - Excellent	B - Good: Minor Effect, slight corrosion, or
stainless steel - 304	A Excellent	discoloration.
		C - Fair: Moderate Effect, not recommended for
		continuous use. Softening or loss of strength, and
		swelling may occur.
		D - Severe Effect: Not recommended for any use.
		E - Information not available.

2-Satisfactory to 120°F (48°C)

CAK RIDGE SPALLATION National Laboratory SOURCE

Two Vendors, Different Designs

Vendor #1

Tube is in the channel and epoxied. Components are on the non-tube side. Epoxy is thin but has high thermal resistance. Tube is pressed in and machined. Components are on the tube side. This is a good design because components make direct contact with tube.

0

00

Vendor #2

0

0

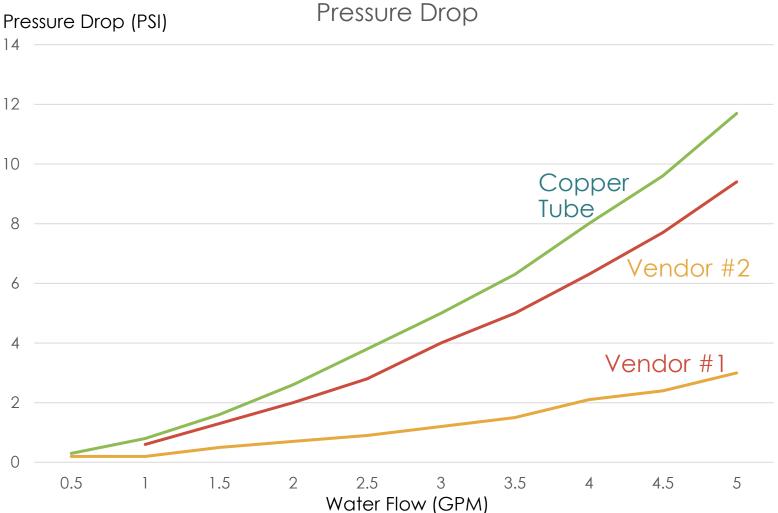
10 cold plates were ordered each for evaluation.

Actional Laboratory

Vendor #1 and #2's Cold Plates

Multiple copper pieces brazed together. Tube in the middle of cold plate.

Existing Cold Plate Copper Tube OD=0.45"

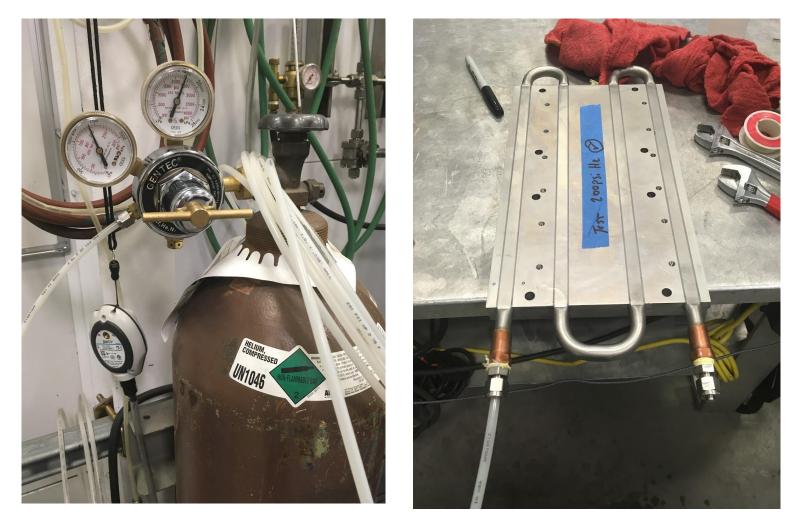


Vendor#1 Cold Plate with 1/2" SS Tube

Vendor#2 Cold Plate 1/2" SS Tube

Pressure Drop Test

				Pre
Flow (GPM)	∆P (PSI) Copper	∆P (PSI) #1 1/2" SS Tube	∆P (PSI) #2 1/2" SS Tube	14 12
0.5	0.3	0.2		10
1	0.8	0.2	0.6	10
1.5	1.6	0.5	1.3	8
2	2.6	0.7	2	
2.5	3.8	0.9	2.8	6
3	5.0	1.2	4	
3.5	6.3	1.5	5	4
4	8.0	2.1	6.3	2
4.5	9.6	2.4	7.7	
5	11.7	3	9.4	0

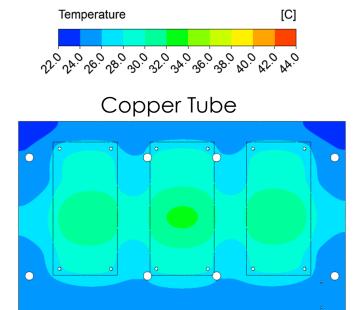


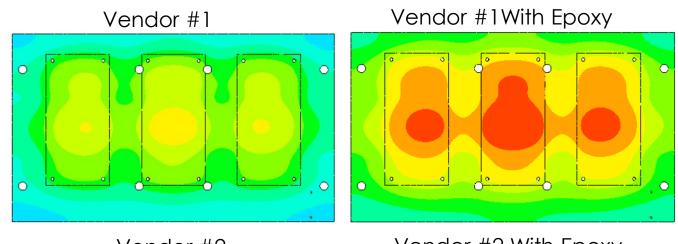
Copper Tube OD=0.45" ID=0.38" Vendor#1 Tube SS304 OD=0.5" Wall=0.028" ID=0.444" Vendor#2 Tube SS304 OD=0.5" Wall=0.049" ID=0.402" CAK RIDGE SUBJECT SOURCE

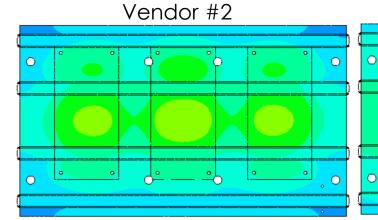
Vendor#1 and Vendor #2 cold plates have less pressure drop than the copper tube cold plate.

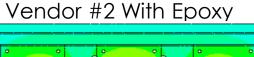
Pressure Hold-off Test

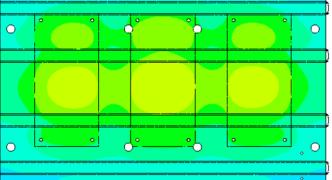
Operating pressure=80 PSI. Both cold plates passed 200PSI, 1 hour test, 2.5 times of the operating pressure.

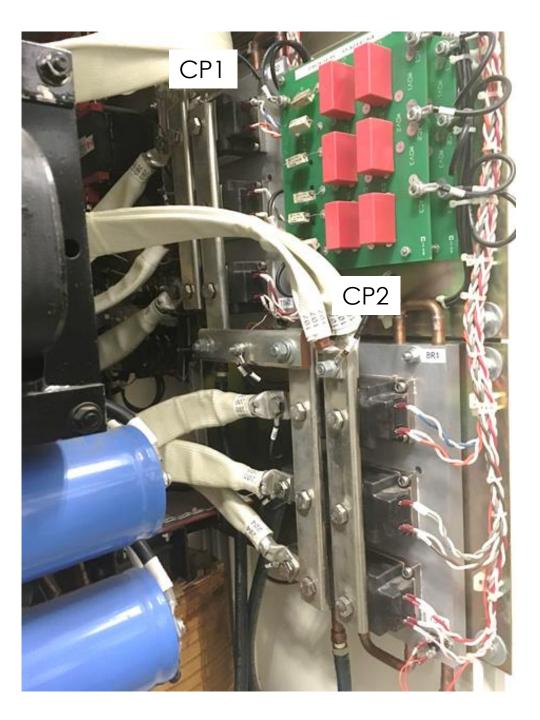





Simulation


13

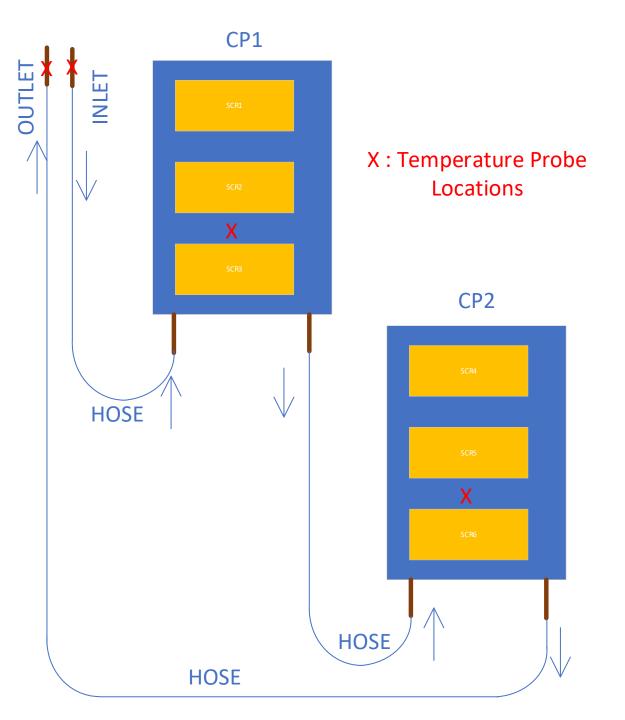

- Vendor #1 cold plate is hotter than • vendor #2 under same conditions.
- Epoxy plays an important role. •


Heat Flow =1 kW Water Flow=2.1GPM	Copper Tube	Vendor #1	Vendor #2	Vendor #1 w/Epoxy	Vendor #2 w/Epoxy
Thermal Contact Resistance (m ² K/W)	0	0	0	0.0001*	0.0001*
ΔT Probe Temp on CP to Inlet (°C)	6.9	13.2	9.9	18.1	12.6
ΔT Max Temp on CP to Inlet(°C)	10.3	17.3	13.3	22.0	15.9
* Thermal Contact Resistance of Various Carbon Nanomaterial-based Epoxy Composites Developed for Thermal National Laboratory Source Applications, Mohsin Ali Raza, Aidan Westwood, Journal of Materials Science: Materials in Electronics, 2019					

* Thermal Contact Resistance of Various Carbon Nanomaterial-based Epoxy Composites Developed for Thermal Interface Applications, Mohsin Ali Raza, Aidan Westwood, Journal of Materials Science: Materials in Electronics, 2019

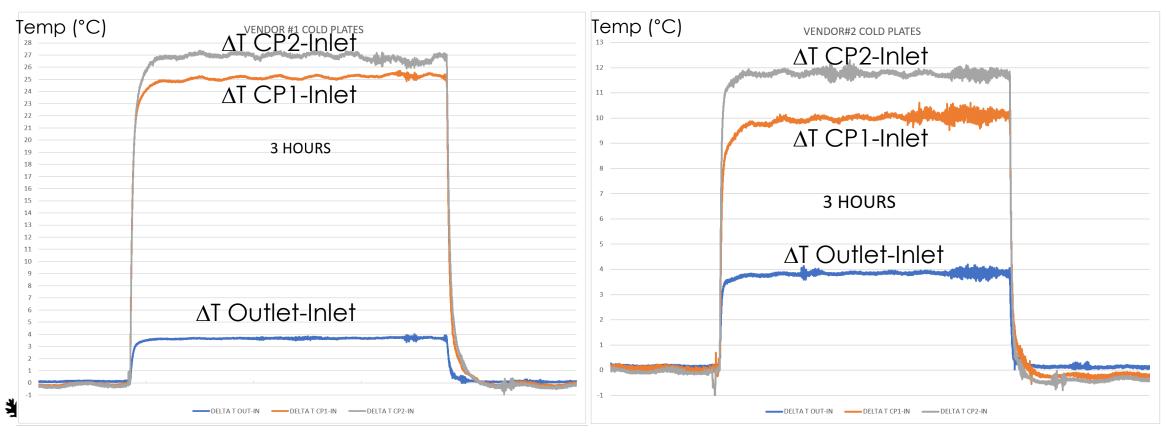
Cold Plate Thermal Test

- The test was conducted on a spare power supply in the power supply test stand so we could acquire data quickly.
- Two cold plates (CP1 and CP2) are in use.


SPALLATION NEUTRON SOURCE

Cold Plate Test

- Power supply output 500A/18V.
- A Keyence flow meter was used to measure the flow, ensuring the flow remained same ~2.1GPM.
- Four temperatures were taken: inlet, outlet, CP1 and CP2.
- **Δ**T

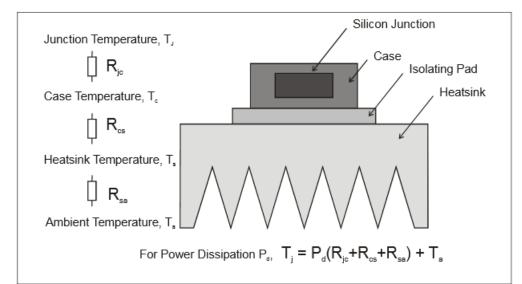

CAK RIDGE SPALLATION National Laboratory SOURCE

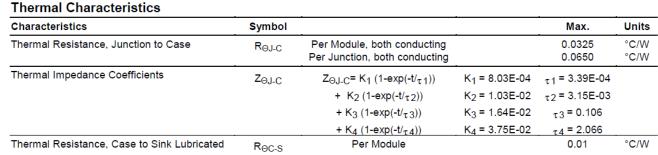
- Outlet to inlet : For calculation of heat flow removed by water = 264*Flow(GPM)* ∆T(C) (Watt)
- CP1 to inlet & CP2 to inlet: related to the cold plate thermal resistance.

Test Data

Flow=2.1GPM PS Output 500A 18V	Cold Plate with Copper Tube	Vendor #1 Cold Plate with 1/2" SS Tube	Vendor #2 Cold Plate with 1/2" SS Tube
∆T Outlet-Inlet (°C)	4.2	3.7	3.9
∆T CP1-Inlet (°C)	8	25	10
∆T CP2-Inlet (°C)	10	27	12

Junction Temperature


Junction temperature, is the highest operating temperature of the actual semiconductor in an electronic device. Exceeding a junction temperature for an extended period can result in device failure.


Solid State Devices	Ratings	Operating Temperature T _J (C)
Powerex CM800DU-12H	800A/600V	-40 to 150
Powerex LD430850NA	500A/800V	-40 to 130
Powerex LD430825NA	250A/800V	-40 to 130

Junction Temperature Calculations

Heat removed by water P=264*Flow $\Delta T \sim 2160$ Watts Two Cold Plates, each 1080 Watts

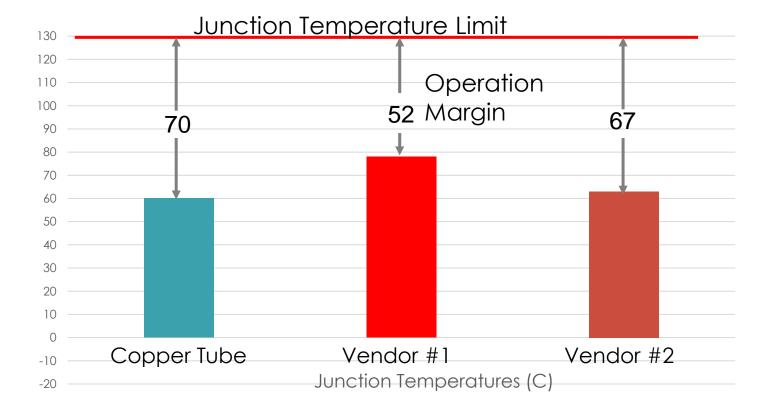
Thermal Resistance Junction to Case Rjc=0.0325 C/W Thermal Resistance Case to Sink Rcs=0.01 C/W Thermal Resistance Junction to Sink = 0.0325+0.01=0.0425 C/W Three SCRs on each cold plates Power Dissipation of Each SCR=360 Watts Delta T Junction to Sink= 360*0.0425=15 C Inlet Temperature = 33C

Vendor #1

Cold Plate Probe Temperature Ts=33+27 =60 C Max Temperature =60+3=63C Junction Temperature Tj=15+63=78 C

Vendor #2 Cold Plate Probe Temperature Ts=33+12 =45 C Max Temperature =45+3=48C Junction Temperature Tj=15+48=63 C

Test Results


- Both Vendor #1 and Vendor #2 cold plates have sufficient design margin under normal operating conditions.
- Vendor #2 cold plate has better thermal performance than Vendor #1 cold plate.
- Vendor #2 cold plate runs slightly hotter than existing cold plate under same conditions.

After the test, 5 Vendor #2 cold were installed in operational power supplies and ran for over 6 months with no issues.

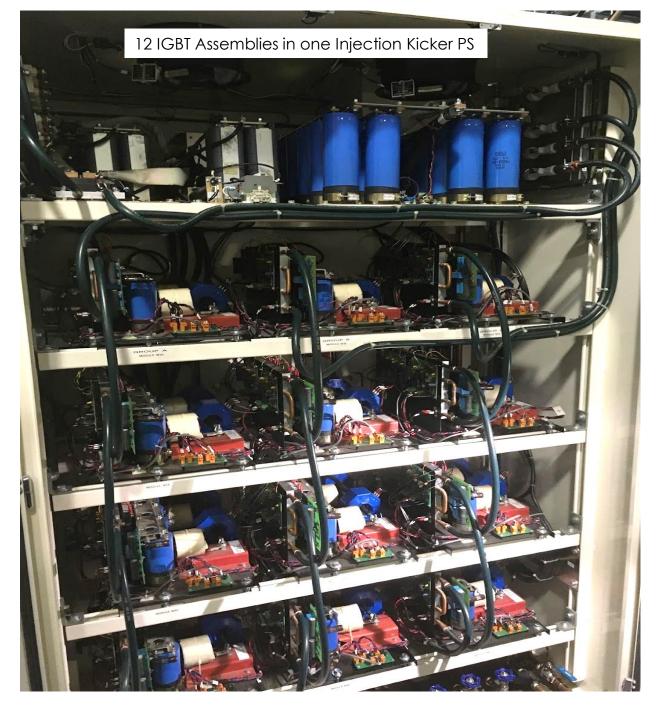
Vendor#2 has been selected as the path forward.

CAK RIDGE National Laboratory

Flow Q=2.1GPM I=500A V=18V	Copper Tube Cold Plate	Vendor #1 Cold Plate	Vendor #2 Cold Plate
Inlet Temperature (°C)	33	33	33
∆T CP2-Inlet (°C)	9	27	12
CP2 Probe Temperature (°C)	42	60	45
CP2 Maximum Temperature (°C)	45	63	48
SCR Junction Temperature (°C)	60	78	63

Cold Plate Count

		Cold Plate						
Power Supply	Ratings	Large 12"X7"X0.83"					Small 7.875"X5"X0.83"	
		Type 1A: SCR	Type 1B: SCR	Type 2: IGBT	Type 3: Resistor	Type 4: IGBT&Diode	Type 1: SCR	Type 2: Diode
Injection Kicker (8)	1400A 800V	8		96	8			8
Medium 185A (4+1)	185A 27V						10	
Type 3 (5+3)	375A 80V					8		
Medium 390A								
(16+1)	390A 24V						34	
Type 2 (7+1)	400A 24V					8		
Medium 700A (13)	700A 18V		26					
Medium 700A (1+1)	700A 25V		4					
Medium 900A (9)	900A 51V	18						
Medium 900A (3+1)	900A 80V	8						
Sub-Total		34	30	96	8	16	44	8
Total					236			


Installation Plan

Facts

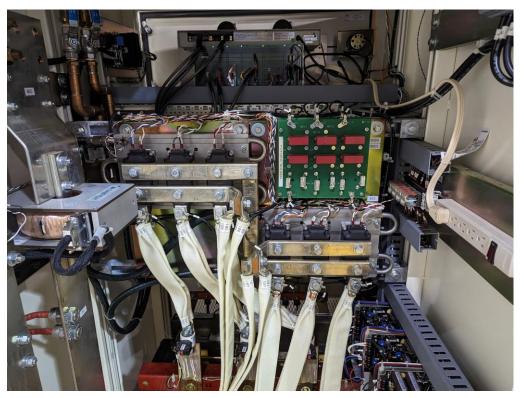
- All leaks happen in Ring Service Building (RSB).
- Most occur in Injection Kicker power supplies because each injection kicker power supply has 15 cold plates while other IE power supplies have two cold plates each.

Plan

- Complete RSB first, then RTBT service building, HEBT service building, Klystron building.
- Most installation will be done in FY23B outage.

SPALLATION National Laboratory

Detailed Upgrade Plan


Week	From	То	Systems
1	2/28/2023	3/3/2023	Injection Kicker H01 (15 Cold Plates)
2	3/6/2023	3/10/2023	Injection Kicker V01 (15 Cold Plates)
3	3/13/2023	3/17/2023	Injection Kicker H02 (15 Cold Plates)
4	3/20/2023	3/24/2023	Injection Kicker V02 (15 Cold Plates)
5	3/27/2023	3/31/2023	Injection Kicker H03 (15 Cold Plates)
6	4/3/2023	4/7/2023	Injection Kicker V03 (15 Cold Plates)
7	4/10/2023	4/14/2023	Injection Kicker H04 (15 Cold Plates)
8	4/17/2023	4/21/2023	Injection Kicker V04 (15 Cold Plates)
9	4/24/2023	4/28/2023	Power Supplies in Ring Service Building (28 Cold Plates)
10	5/1/2023	5/5/2023	Power Supplies in RTBT Service Building (22 Cold Plates)
11	5/8/2023	5/12/2023	Power Supplies in HEBT Service Building #1 (22 Cold Plates)
12	5/15/2023	5/19/2023	Power Supplies in HEBT Service Building #2 (22 Cold Plates)

Klystron building power supplies can be swapped out on maintenance days.

Replacement Campaign

- Long lead time due to Covid but eventually we received new cold plates in January 2023.
- The campaign started March 1, 2023.
- All the cold plates were replaced as planned.
- PSs turned on 5/26/2023. A few had issues on connections.

 $|AKRIDGE|_{S}$ New Cold Plates in a 900A Quad PS

23

Injection Kicker PS with New Cold Plates

Summary

- Deionized (DI) water corrodes copper, causing pin hole leak and long hours of downtime.
- Stainless-Steel is compatible with DI water. Two vendors' cold plates were evaluated, and the one with better thermal performance was selected as the replacement unit.
- We completed a campaign to replace more than 95% of copper tube cold plates in service.

• Questions/ Comments?

