

Emilio Nanni 12/7/2022

Acknowledgements

Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

> SLAC-PUB-17661 April 12, 2022

Strategy for Understanding the Higgs Physics: The Cool Copper Collider

Editors:

SRIDHARA DASU⁴⁴, EMILIO A. NANNI³⁵, MICHAEL E. PESKIN³⁶, CATERINA VERNIERI³⁶

Contributors:

TIM BARKLOW³⁶, RAINER BARTOLDUS³⁶, PUSHPALATHA C. BHAT¹⁴, KEVIN BLACK⁴⁴, JIM BRAU²⁹, MARTIN BREIDENBACH³⁶, NATHANIEL CRAIG⁷, DMITRI DENISOV³, LINDSEY GRAY¹⁴, PHILIP C. HARRIS²⁴, MICHAEL KAGAN³⁶, ZHEN LIU²³, PATRICK MEADE³⁶, NATHAN MAJERNIK⁶, SERGEI NAGAITSEV^{†14}, ISOBEL OJALVO³², CHRISTOPH PAUS²⁴, CARL SCHROEDER¹⁷, ARIEL G. SCHWARTZMAN³⁶, JAN STRUBE^{29,30}, SU DONG³⁶, SAMI TANTAWI³⁶, LIAN-TAO WANG¹⁰, ANDY WHITE³⁸, GRAHAM W. WILSON²⁶

Endorsers:

KAUSTUBH AGASHE²¹, DANIEL AKERB³⁶, ARAM APYAN², JEAN-FRANÇOIS ARGUIN²⁵, CHARLES BALTAY⁴⁵, BARRY BARISH¹⁹, WILLIAM BARLETTA²⁴, MATTHEW BASSO⁴¹, LOTHAR BAUERDICK¹⁴, SERGEY BELOMESTNYKH^{14,37}, KENNETH BLOOM²⁷, TULIKA BOSE⁴⁴, QUENTIN BUAT³, YUNHAI CAI³⁶, ANADI CANEPA¹⁴, MARIO CARDOSO³⁶, VIVIANA CAVALIERE³, SANHA CHEONG¹³⁶, RAYMOND T. CO²³, JOHN CONWAY⁵, PALLABI DAS³², CHRIS DAMERELL³⁵, SALLY DAWSON³, ANKUR DHAR³⁶, FRANZ-JOSEF DECKER³⁶, MARCEL W. DEMARTEAU²⁸, LANCE DIXON³⁶, VALERY DOLGASHEV³⁶, ROBIN ERBACHER⁵, ERIC ESAREY¹⁷, PIETER EVERAERTS⁴⁴, ANNIKA GABRIEL³⁶, LIXIN GE³⁶, SPENCER

GESSNER³⁶, LAWRENCE GIBBONS¹², BHAWNA GOMBER¹⁵, JULIA GONSKI¹¹, STEFANIA GORI⁸, PAUL GRANNIS³⁶, HOWARD E. HABER⁸, NICOLE M. HARTMAN¹³⁶, JEROME HASTINGS³⁶, MATT HERNDON⁴⁴, NIGEL HESSEY⁴², DAVID HITLIN⁹, MICHAEL HOGANSON³⁶, ANSON HOOK²¹, HAOYI (KENNY) JIA⁴⁴, KETINO KAADZE²⁰, MARK KEMP³⁶, CHRISTOPHER J. KENNEY³⁶, ARKADIY KLEBANER¹⁴, CHARIS KLEIO KORAKA⁴⁴, ZENGHAI LI³⁶, MATTHIAS LIEPE¹², MIAOYUAN LIU³³, SHIVANI LOMTE⁴⁴, IAN LOW^{†1}, YANG MA³¹, THOMAS MARKIEWICZ³⁶, PETRA MERKEL¹⁴, BERNIARD MISTLBERGER³⁶, ABDOLLAH MOHAMMAD⁴⁴, DAVID MONTANARI¹⁴, CHRISTOPHER NANTISTA³⁶, MEENAKSHI NARAIN⁴,

TIMOTHY NELSON³⁶, CHO-KUEN NG³⁶, ALEX NGUYEN³⁶, JASON NIELSEN⁸, MOHAMED A. K. OTHMAN³⁶, MARC OSHERSON³³, KATHERINE PACHAL⁴², SIMONE PAGAN GRISO¹⁷, DENNIS PALMER³⁶, EWAN PATERSON³⁶, RITCHIE PATTERSON¹², JANNICKE PEARKES¹³⁶, NAN PHINNEY³⁶, LUISE POLEY⁴², CHRIS POTTER²⁹, STEFANO PROFUNO¹⁸, THOMAS G. RIZZO³⁶, RIVER ROBLES³⁶, AARON ROODMAN³⁶ JAMES ROSENZWEIG⁶, MURTAZA SAFDARI¹³⁶, PIERRE SAVARD^{41,42}, ALEXANDER SAVIN⁴⁴, BRUCE A. SCHUMM¹⁸, ROY SCHWITTERS³⁹, VARUN SHARMA⁴⁴, VLADIMIR SHILTSEV¹⁴, EVGENYA SIMAKOV¹⁹, JOHN SNEDLEY¹⁹, EMMA SINVELY³⁶, BRUNO SPATARO¹⁶, MARCEL STANITZKI¹³, GIORDON STARK¹⁸, BERND STELZER¹⁴², OLIVER STELZER-CHILTON⁴², MAXIMILIAN SWIATLOWSKI⁴², RICHARD TEMKIN²⁴,

JULIA THOM¹², ALESSANDRO TRICOLI³, CARL VUOSALO⁴⁴, BRANDON WEATHERFORD³⁶, GLEN WHITE³⁶, STEPHANE WILLOCQ²², MONIKA YADAV^{6,18}, VYACHESLAV YAKOVLEV¹⁴, HITOSHI YAMAMOTO⁴⁰ CHARLES YOUNG³⁶, LILING XIAO³⁶, ZIJUN XU³⁶, JINLONG ZHANG¹, ZHI ZHENG³⁶ Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

> SLAC-PUB-17660 April 12, 2022

C³ Demonstration Research and Development Plan

Editors:

EMILIO A. NANNI⁶, MARTIN BREIDENBACH⁶, CATERINA VERNIERI⁶, SERGEY BELOMESTNYKH^{2,7}, PUSHPALATHA BHAT² AND SERGEI NAGAITSEV^{2,10}

Authors:

MEI BAI⁶, TIM BARKLOW⁶, ANKUR DHAR⁶, RAM C. DHULEY², CHRIS DOSS⁹, JOSEPH DURIS⁶, AURALEE EDELEN⁶, CLAUDIO EMMA⁶, JOSEF FRISCH⁶, ANNIKA GABRIEL⁶, SPENCER GESSNER⁶, CARSTEN HAST⁶, ARKADIY KLEBANER², ANATOLY K. KRASNYKH⁶, JOHN LEWELLEN⁶, MATTHIAS LIEPE¹, MICHAEL LITOS⁹, JARED MAXSON¹, DAVID MONTANARI², PIETRO MUSUMECI⁸, CHO-KUEN NG⁶, MOHAMED A. K. OTHMAN⁶, MARCO ORIUNNO⁶, DENNIS PALMER⁶, J. RITCHIE PATTERSON¹, MICHAEL E. PESKIN⁶, THOMAS J. PETERSON⁶, JI QIANG³, JAMES ROSENZWEIG⁸, VLADIMIR SHILTSEV, EVGENYA SIMAKOV⁴, BRUNO SPATARO⁵, EMMA SNIVELN⁶, SAMI TANTAWI⁶, BRANDON WEATHERFORD⁶, AND GLEN WHITE⁶

¹Cornell University

²Fermi National Accelerator Laboratory
 ³Lawrence Berkeley National Laboratory
 ⁴Los Alamos National Laboratory
 ⁵National Laboratory of Frascati, INFN-LNF
 ⁶SLAC National Accelerator Laboratory, Stanford University
 ⁷Stony Brook University
 ⁸University of California, Los Angeles
 ⁹University of Colorado, Boulder
 ¹⁰University of Chicago

Additional Contributors

Charlotte Whener Gordon Bowden Andy Haase Julian Merrick Bob Conley Radiabeam Cici Hanna Valery Borzenets Zariq George

> SLAC-PUB-17629 November 1, 2021

 C^3 : A "Cool" Route to the Higgs Boson and Beyond

MEI BAI, TIM BARKLOW, RAINER BARTOLDUS, MARTIN BREIDENBACH^{*}, PHILIPPE GRENIER, ZHIRONG HUANG, MICHAEL KAGAN, ZENGHAI LI, THOMAS W. MARKIEWICZ, EMILIO A. NANNI^{*}, MAMDOUH NASR, CHO-KUEN NG, MARCO ORIUNNO, MICHAEL E. PESKIN^{*}, THOMAS G. RIZZO, ARIEL G. SCHWARTZMAN, DONG SU, SAMI TANTAWI, CATERINA VERNIERI^{*}, GLEN WHITE, CHARLES C. YOUNG

SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025

John Lewellen, Evgenya Simakov

Los Alamos National Laboratory, Los Alamos, NM 87545

JAMES ROSENZWEIG

Department of Physics and Astronomy, University of California, Los Angeles, CA 90095

Bruno Spataro

INFN-LNF, Frascati, Rome 00044, Italy

VLADIMIR SHILTSEV

https://indico.slac.stanford.edu/event/7155/

More Details Here (Follow, Endorse, Collaborate):

Snowmass

Fermi National Accelerator Laboratory, Batavia IL 60510-5011

Starting from Last CLIC Meeting (May 2022)

Summary Still Accurate!

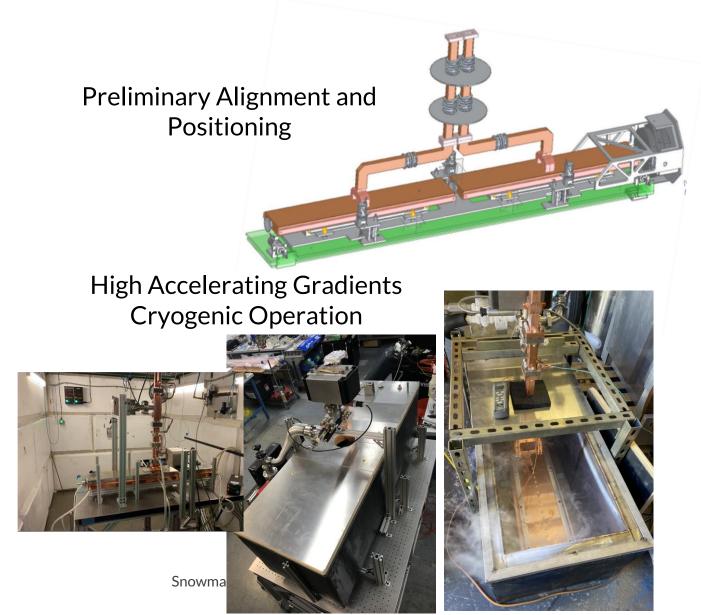
- Many years of collaboration through the high gradient community have proved successful at transforming the capability of accelerators and rf sources
- Many opportunities to collaborate between CLIC and C3
 - RF sources, manufacturing, rf pulse compression, beam dynamics, beam diagnostics...
 - As a concept C3 is built on the great work of CLIC and ILC
- Maybe one day we can return the favor....

New:

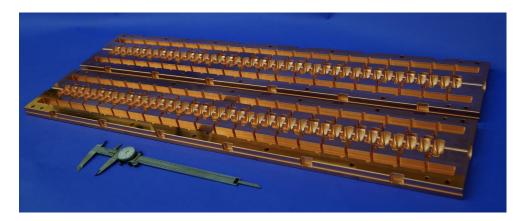
- ...(Maybe one day we can return the favor) Not yet... still need your help....
- Recent focus areas:
 - Alignment
 - Stability
 - Sustainability
 - Demo Plan

8 km footprint for 250/550 GeV CoM \Rightarrow 70/120 MeV/m

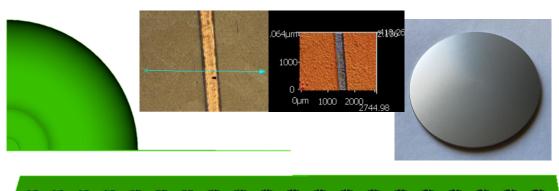
• 7 km footprint at 155 MeV/m for 550 GeV CoM – present Fermilab site Large portions of accelerator complex are compatible between LC technologies

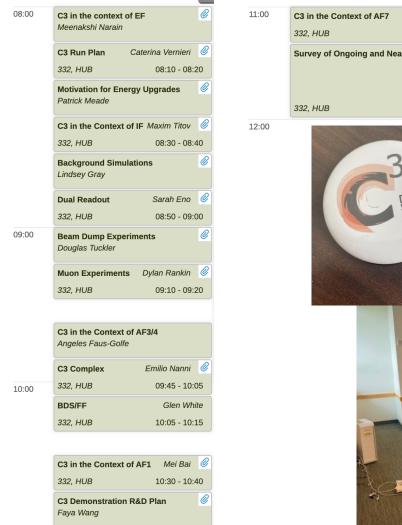

- Beam delivery and IP modified from ILC (1.5 km for 550 GeV CoM)
- Damping rings and injectors to be optimized with CLIC as baseline
- Reliant on work done by CLIC and ILC to make progress

C³ Parameters



C³ - 8 km Footprint for 250/550 GeV


Ongoing Technological Development


Modern Manufacturing Prototype One Meter Structure

Integrated Damping Slot Damping with NiChrome Coating

C³ Session @ Snowmass

- Four hour session on Friday 7/22
- ~70 participants (35/35 in person/virtual)
- Engaged AF/EF/IF/ITF
- Announced follow up workshop Oct.
 13/14th to finalize P5 Input

Snowmass

C³ October Meeting

You are registered for this event.

https://indico.slac.stanford.edu/event/7315/overview

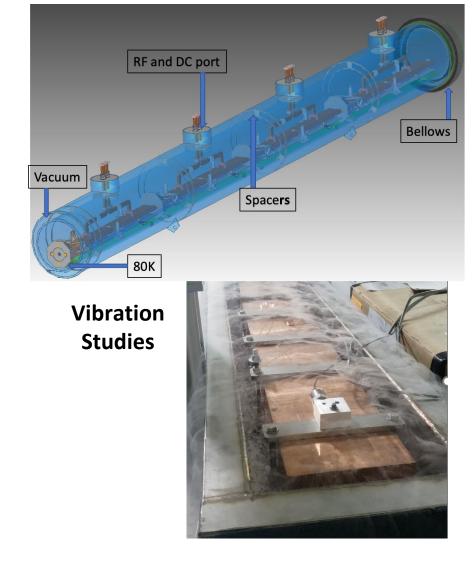
Cool Copper Collider Workshop 13-14 October 2022 SLAC America/Los_Angeles timezone Overview This workshop is a follow-up to the Snowmass meeting in Seattle. The goal of this two-days event is to focus the discussions on the R&D plans and demonstration facility for the Cool Copper Collider. We will Timetable also have a dedicated session on development of plans and proposals for detector R&D for Contribution List experiment(s) at a C3 facility. My Conference We really encourage in-person attendance and looking forward to welcome you at SLAC. My Contributions Registration Please note that you have to register for the workshop to participate and if you intend to attend inperson, please register before the deadline of September 30, 2022. Participant List SLAC Starts 13 Oct 2022, 08:25 0 40/1-195 - Sycamore Ends 14 Oct 2022, 18:45 America/Los_Angeles Andrew White 🗟 ccc.png Caterina Vernieri IMG_7034.jpg Emilio Nanni Screen Shot 2022-10-12 at 1.19.48 PM.png Isabel Oialvo Jim Brau Martin Breidenbach Pushpalatha Bhat Sridhara Dasu Registration

Next Meeting In Feb. at LANL - Register here for announcements <u>https://indico.slac.stanford.edu/event/7155/</u>

See details >

90

Accelerator Design and Challenges

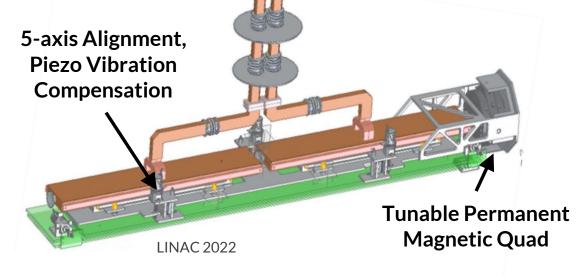

Accelerator Design

 Engineering and design of prototype cryomodule underway

Focused on challenges identified with community through Snowmass (all underway)

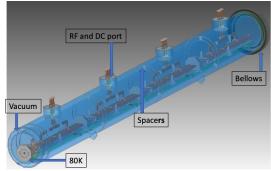
- Gradient Scaling up to meter scale cryogenic tests
- Vibrations Measurements with full thermal load
- Alignment Working towards raft prototype
- Cryogenics Two-phase flow simulations to full flow tests
- Damping Materials, design and simulation
- Beam Loading and Stability Thermionic beam test
- Scalability Cryomodules and integration
 Laying the foundation for a demonstration program
 to address technical risks beyond RDR (CDR) level

Cryomodule Concept


Cryomodule Design and Alignment

Up to 1 GeV of acceleration per 9 m cryomodule; ~90% fill factor with eight 1 m structures

Main linac will require 5 micron structure alignment

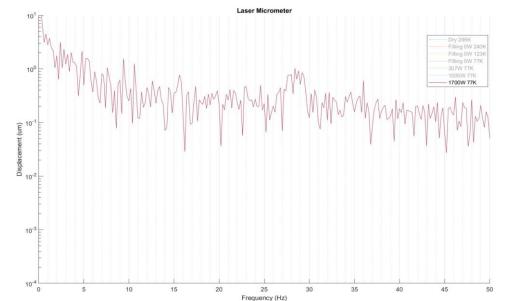

- Combination of mechanical and beam based alignment Pre-alignment warm, cold alignment by wire, followed by beam based (Maybe RasNik, RasDif optical alignment better?)
- Mechanical motor runs warm or cold no motion during power failure
- Piezo for active alignment

Investigating support and assembly design Accelerator Raft ~2.25 m

Phytron LAV Thomson 500 Series Cross Roller Slide Mounting PI PIEZO Brackets

Cryomodule Concept ~9m

For High Loads and Forces, with Position Sensor


- Outstanding lifetime due to PICMA® piezo actuators
- Travel range to 90 µm
- Push force capacity to 3000 N
- Pull force capacity to 700 N
- µs response time
- Subnanometer resolution
- Vacuum versions, optional water-resistant housing

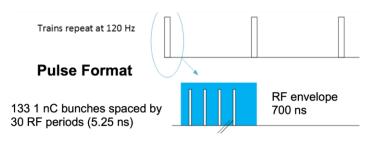
Achieving Luminosity

- Our goal is to achieve MW class beam power for luminosity
- Requires we meet the emittance of CLIC given our bunch format
- Requires we meet CLIC tolerances to preserve emittance
 - Alignment components exist for operation at cryo – motors/piezos – 5 micron
 - Need very high stability of magnets ->
 Permanent magnets we are working to
 understand if they are sufficiently isolated
 from structures which are vibrating
- Present bunch spacing large 3-5 ns need to study...

Large Scale Cryogenics

Very high confidence in performance of cryoplants – many commercial examples We assume 15% plant efficiency; Air liquide quoted 16.4%up to 16.8%

Nitrogen liquefier - Texas, 320tpd LIN production (~1MW eq. At 80K)

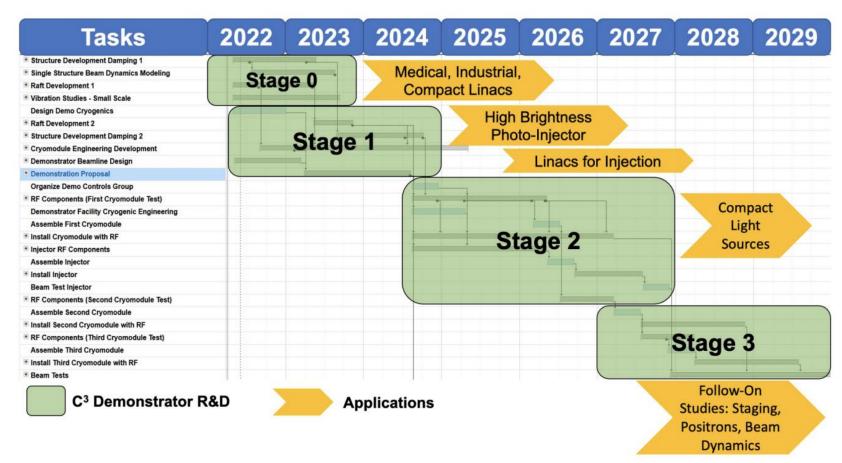

Cooling Tower

Cold Box

<u>Feed / Cycle Compressor</u> Combined Integrally Geared Centrifugal Machine

Power Consumption and Sustainability

Compatibility with Renewables Cryogenic Fluid Energy Storage

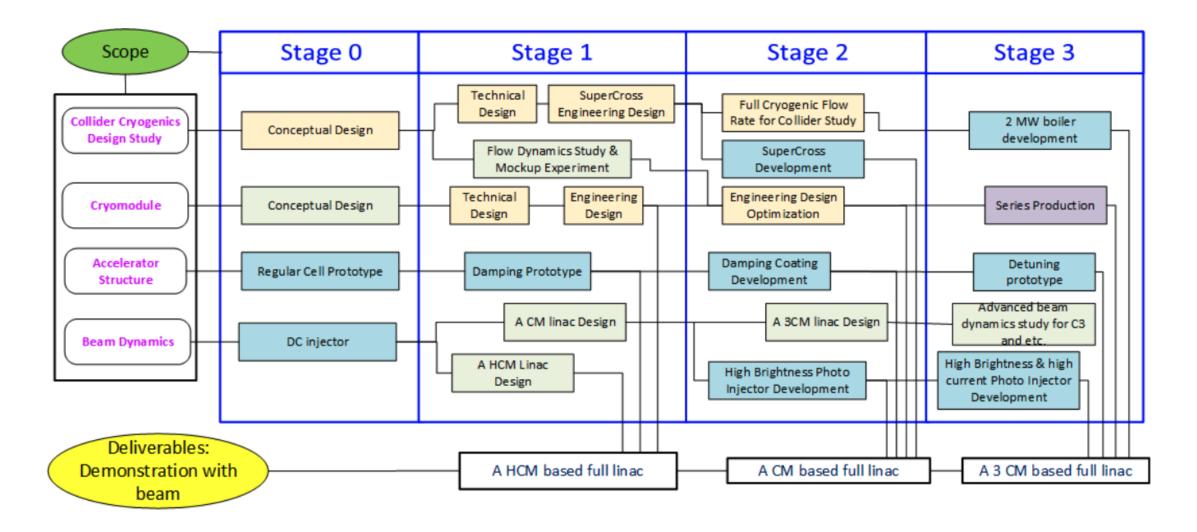

Temperature (K)	77
Beam Loading (%)	45
Gradient (MeV/m)	70
Flat Top Pulse Length (μ s)	0.7
Cryogenic Load (MW)	9
Main Linac Electrical Load (MW)	100
Site Power (MW)	~150

Intermittent and variable power production from renewables mediated with commercial scale energy storage and power production

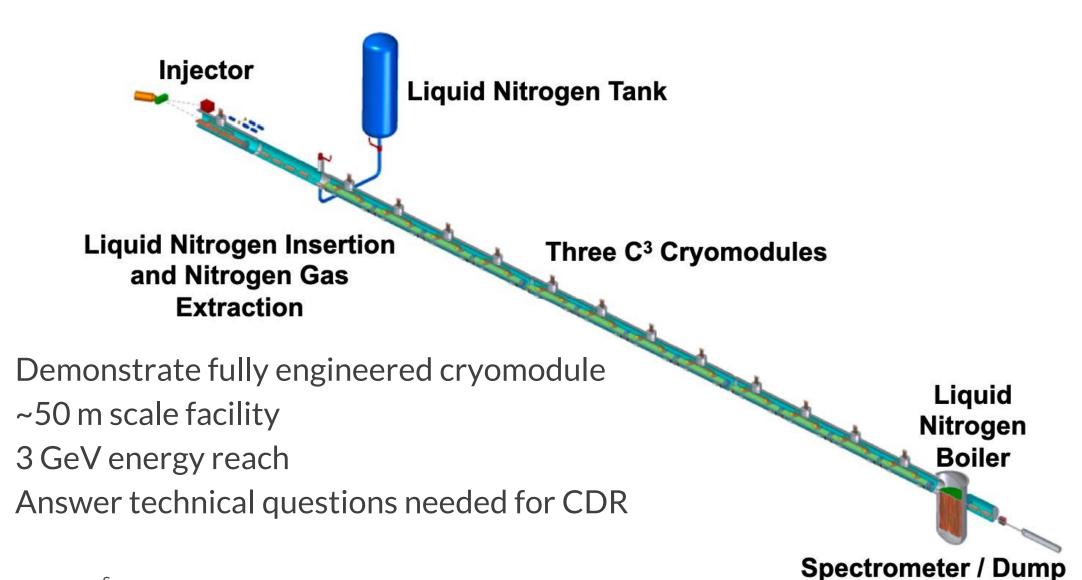
250 GeV CoM - Luminosity - 1.3x10³⁴

Parameter	Units	Value
Reliquification Plant Cost	M\$/MW	18
Single Beam Power (125 GeV linac)	MW	2
Total Beam Power	MW	4
Total RF Power	MW	18
Heat Load at Cryogenic Temperature	MW	9
Electrical Power for RF	MW	40
Electrical Power For Cryo-Cooler	MW	60
Accelerator Complex Power	MW	~50
Site Power	MW	~150

C³ Demonstration R&D Plan timeline

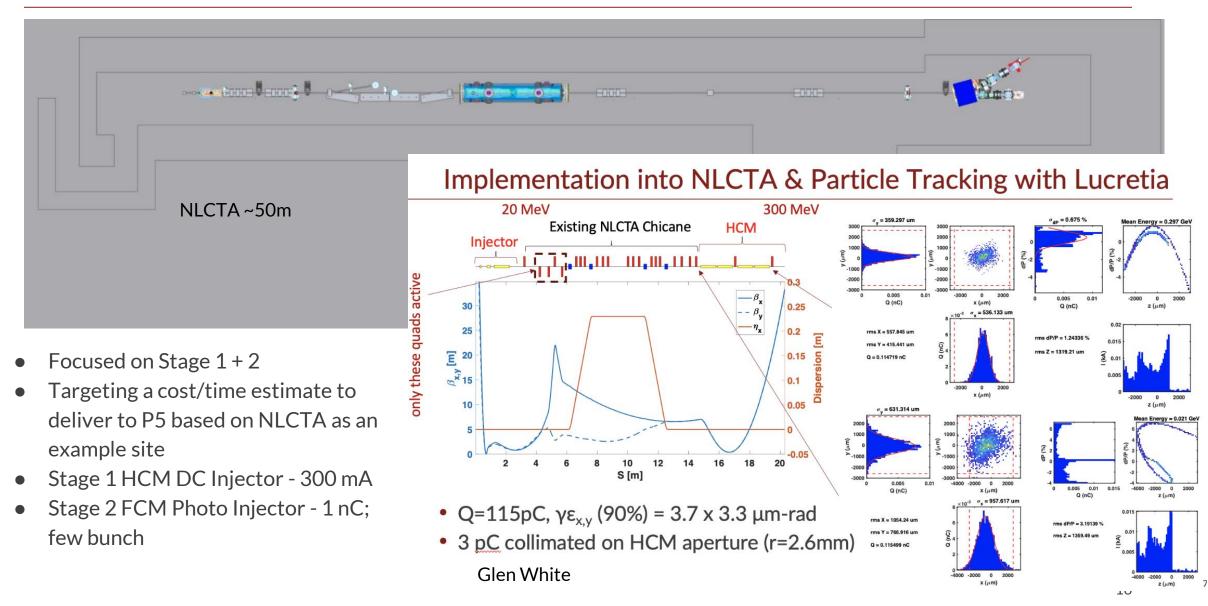


High Energy Physics: Caterina Vernieri <u>caterina@slac.stanford.edu</u> Accelerator Science & Engineering: Emilio Nanni <u>nanni@slac.stanford.edu</u> C³ R&D, System Design and Project Planning are ongoing


- Early career scientists should help drive the agenda for an experiment they will build/use
- Many opportunities for other institutes to collaborate on:
 - beam dynamics, vibrations and alignment, cryogenics, rf engineering, controls, detector optimization, background studies, etc.

C3 Demo Staged Plan

Ongoing Scoping Study in Preparation for P5



The Complete C³ Demonstrator

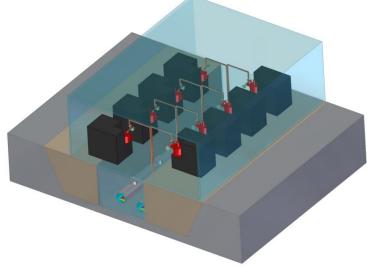
Snowmass

C3 Demo Studies - Stage 1 Half Cryomodule

- C3 wants US participation in any future collider; we hope to deliver that message clearly to P5
- Please provide input feedback on our early career letter <u>https://sites.google.com/view/ec4c3/home</u>
 - ALL are welcome to sign it and participate in crafting it
- LCWS May 15-19th 2023 at SLAC!

BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT

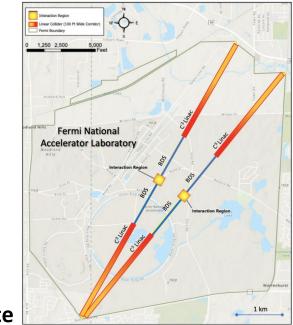
Questions?


BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT

Backup

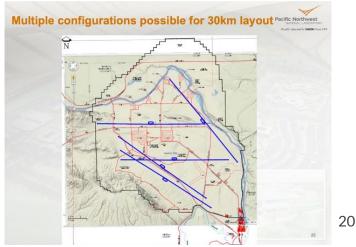
Civil Construction and Siting

- Compact footprint <8 km for 550 GeV allows for many siting options
- Evaluating both underground and surface sites
 - Underground less constraints on energy upgrade
 - Surface lower cost and faster to first physics


Surface-Site Mockup (Tunnel in White Paper)

- Rapid Excavation / Parallel Installation
- No Vertical Shafts

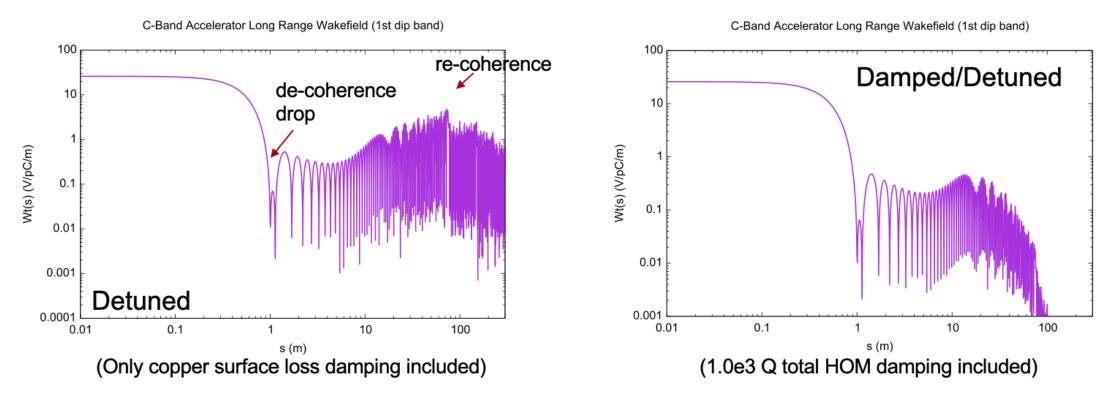
Fermilab Site Filler



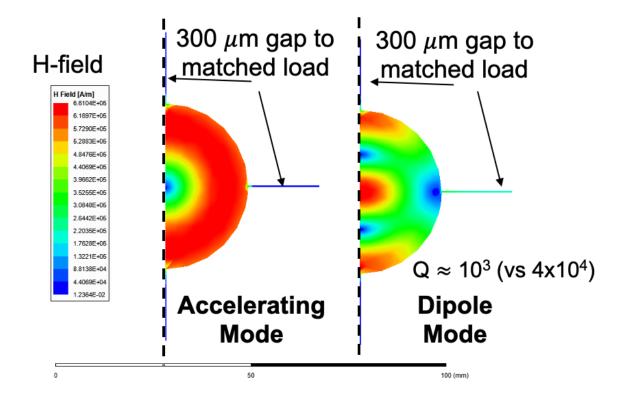
Hanford Site

National Lab and

Green Field are


Possibilities

Gaussian Detuning Provides Required 1st Band Dipole Suppression for Subsequent Bunch, Damping Also Needed


Dipole mode wakefields immediate concern for bunch train 4σ Gaussian detuning of 80 cells for dipole mode (1st band) at f_c =9.5 GHz, w/ $\Delta f/f_c$ =5.6% First subsequent bunch s = 1m, full train ~75 m in length

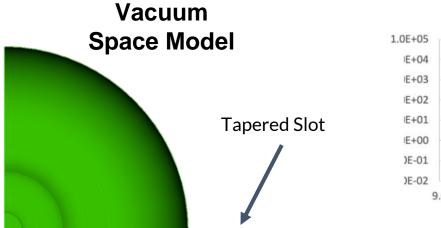
• Damping needed to suppress re-coherence

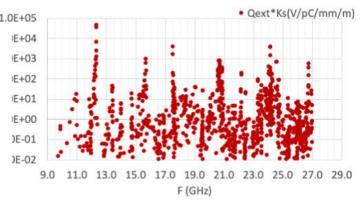
Distributed Coupling Structures Provide Natural Path to Implement Detuning and Damping of Higher Order Modes


Individual cell feeds necessitate adoption of split-block assembly Perturbation due to joint does not couple to accelerating mode Exploring gaps in quadrature to damp higher order mode

Detuned Cavity Designs

Quadrant Structure




Abe et al., PASJ, 2017, WEP039

22

Implementation of Slot Damping

Need to extend to 40 GHz / Optimize coupling / Modes below 10⁴ V/pC/mm/m NiCr coated damping slots in development Seeeking options with chemical plating

25 mm tapered lossy slot (sigma=1e6)

Kick Factor * Q

Damping Slot Prototype

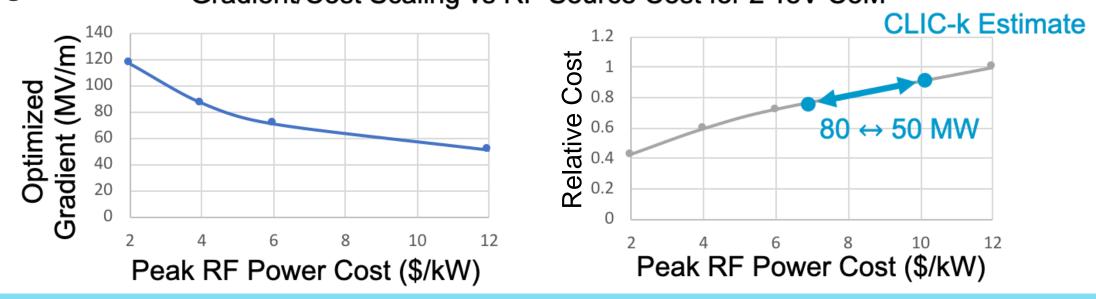
Oum 1000

NiChrome Coating

23

RF Sources

- Picture is more nuanced we assume 65% for the klystron, 50% for the rf source
- We assume PPM focusing
- These efficiencies and higher have been demonstrated - in particular with expensive depressed collectors
 - Promising HEIKA work needs to continue
 - RF source design not in demo how do we support this? (industry, other applications)
 - Not in our baseline: RF pulse compression could help a lot by reducing fill time


75XP-3

https://indico.cern.ch/event/39372/contributions/1829827/attachments/7879 79/1080133/AVIieks-X-Band_Klystron_Development_at_SLAC-final.pdf

RF Source R&D Over the Timescale of the Next P5

RF source cost is the key driver for gradient and cost
 Significant savings when items procured at scale of LC
 Need to focus R&D on reducing source cost to drive economic argument for high
 gradient
 Gradient/Cost Scaling vs RF Source Cost for 2 TeV CoM

Understand the Impact on Advanced Collider Concept Enabled by the Goals Defined in the DOE GARD RF Decadal Roadmap

https://science.energy.gov/~/media/hep/pdf/Reports/DOE_HEP_GARD_RF_Research_Roadmap_Report.pdf

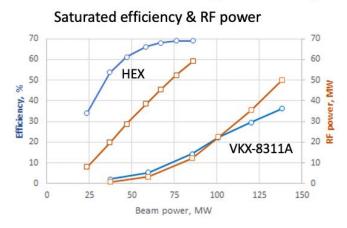
RF Sources Available vs. Near Term Industrial Efforts

RF sources and modulators capable of powering C³-250 commercially available

Plan to leverage significant developments in performance (HEIKA) of high power rf sources – requires industrialization

New 50 MW peak power C-band klystron installed in September 2019

BVEI X-band 50 MW 57%


SLAC BAC Prototype S-band Retrofit +10% efficiency, 73 MW 4 New Cavities Added to Drift Space Near Term Industry 20-MW X-band Klystron Distance Klystron: E37116 Perveance : 1.25 Electromagnet: VT-68970 Parameter Sim. Target | Design result Beam voltage[kV] 265 (<290) 265 Beam current [A] 170.3 (<195) 170.3 24.3 Output power [MW] >23 >51 53.8 Efficiency [%] Drive power [W] ~120 (<400) 120 Max. electric field <64.5 60.4 strength [kV/mm] (at 1.5 µs) No reflected OK Stability electrons * Actual efficiency is estimated to be 46 - 48% Canon CANON ELECTRON TUBES & DEVICES CO., LTD.

Two tubes have been built and tested up to 20MW

High Efficiency Klystrons

Please See I. Syratchev's Talk for Many Great Examples from Designs to Prototypes

3D Particle-in-Cell (PIC) simulations

Retro-fit High Efficiency 50 MW, 12 GHz klystron (CERN/CPI).

		VKX-8311A	HEX COM_M (CERN/CPI)
	Voltage, kV	420	420
and a second sec	Current, A	322	204
12	Frequency, GHz	11.994	11.994
	Peak power, MW	49	59
	Sat. gain, dB	48	59
	Efficiency, %	36.2	69
	Life time, hours	30 000	85 000
*	Solenoidal magnetic field, T	0.6	0.37
VKX-8311A	RF circuit length, m	0.316	0.316

https://indico.cern.ch/event/110154 8/contributions/4635964/attachment s/2363439/4034986/CLIC PM 13 12 2021.pdf

CST

- Re-used solenoid. .
- Increased life time (> factor 2)
- Reduced modulator power (~ factor 2)
- Increased power gain (10 dB) ٠
- Reduced solenoidal field

Prototype fabrication is under negotiation within CPI/INFN/CERN collaboration.

I. Syratchev, CLIC PM #41, 13.12.2021

		VKX-8311A	HEX COM_M (CERN/CPI)
	Voltage, kV	420	420
Hard Street	Current, A	322	204
	Frequency, GHz	11.994	11.99
	Peak power, MW	49	59
	Sat. gain, dB	48	59
	Efficiency, %	36.2	69
	Life time, hours	30 000	85 00
X	Solenoidal magnetic field, T	0.6	0.37
VKX-8311A	RF circuit length, m	0.316	0.31

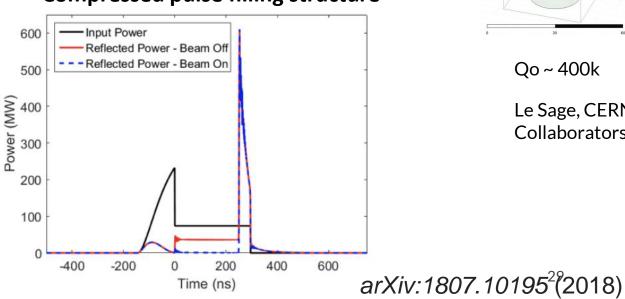
Luminosity, Power and Sustainability

- C3 electrical power budgets
- Underlying assumptions:
 - Leverage power estimates from
 CLIC / ILC
 - What is different about C3?
 - Cooling
 - RF Sources
- The biggest challenges for achieving the design luminosity
 - Emittance, emittance, emittance

Proposal name	C3 - Cool Copper Collider	
Beam energy [GeV]		125
Average beam current [A or mA]	0.016 mA	
SR power [MW]	n/a	
Collider cryo power [MW]		60
Collider RF power [MW]		40
Collider magnet power [MW]		16
Cooling & ventilation power [MW]		10
General services power [MW]		10
Injector cryo power [MW]		6
Injector RF power [MW]		4
Injector magnet power [MW]		4
Pre-injector power (where applicable) [MW]	n/a	
Detector power (if included) [MW]	n/a	
Data center power (if included) [MW]	n/a	
Total power [MW]		150
Luminosity [10^(34) /cm^2/s]		1.3
Total integrated luminosity / year [1/fb/yr]	0.21 ab-1	
Effective physics time per year		
asumed/needed to achieve integrated		
annual luminosity [10^7 s]		1.6
Energy Consumption / year [TWh]		0.67

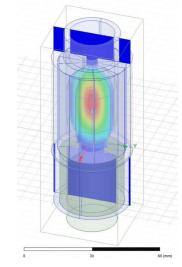
Upgrade Options

Luminosity


- Beam power can be increased for additional luminosity
- C³ has a relatively low current for 250 GeV CoM (0.19 A) - Could we push to match CLIC at 1.66 A? (8.5X increase?)
- Pulse length and rep. rate are also options

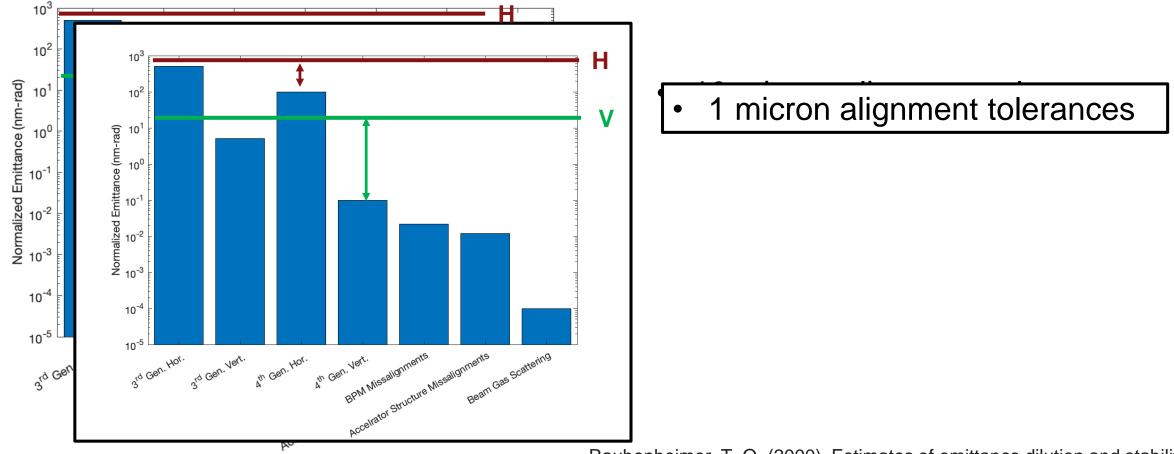
Parameter	Units	Baseline	High-Lumi
Energy CoM	GeV	250	250
Gradient	MeV/m	70	70
Beam Current	А	0.2	1.6
Beam Power	MW	2	16
Luminosity	x10 ³⁴	1.3	10.4
Beam Loading		45%	87%
RF Power	MW/m	30	125
Site Power	MW	~150	~180

Caution: Requires serious investigation of beam dynamics - great topic for C³ Demonstration R&D


Reducing Power

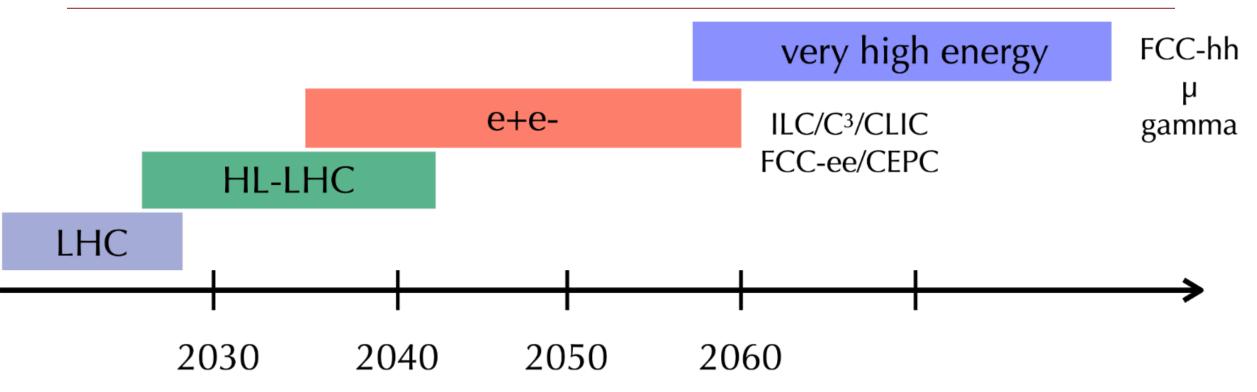
- RF pulse compression can reduce thermal losses
- Save up to 25% of main linac power (25MW) for 250 GeV
- Need to reach multi-TeV but could be implemented earlier
- Need very high Q (large compressor); HTS coatings may make more practical

Compressed pulse filling structure


HTS Pulse Compressor REBCO Coatings

Qo ~ 400k

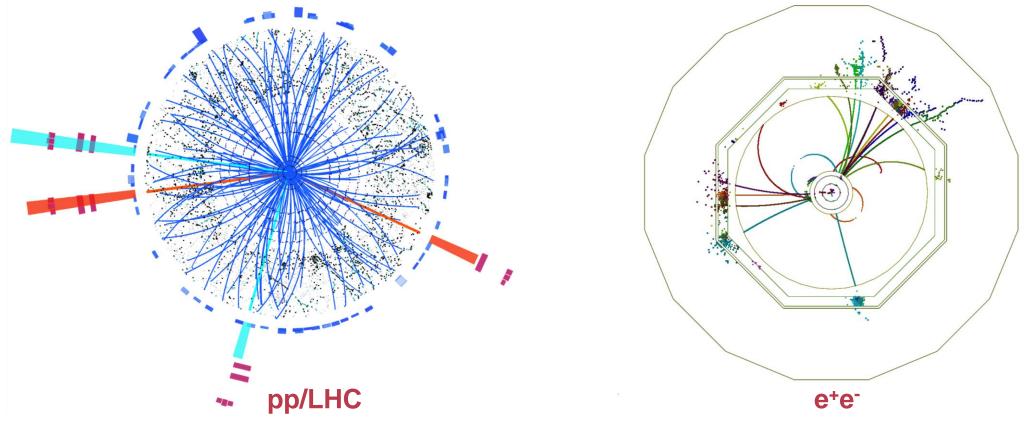
Le Sage, CERN Collaborators


Tolerances are a big question and we need to prove them in the demo....

Caution: Requires serious investigation of beam dynamics - great topic for C³ Demonstration R&D

Raubenheimer, T. O. (2000). Estimates of emittance dilution and stability in high-energy linear accelerators. *Physical Review Special Topics*-30 *Accelerators and Beams*, *3*(12), 121002.

What's Next for the Energy Frontier?

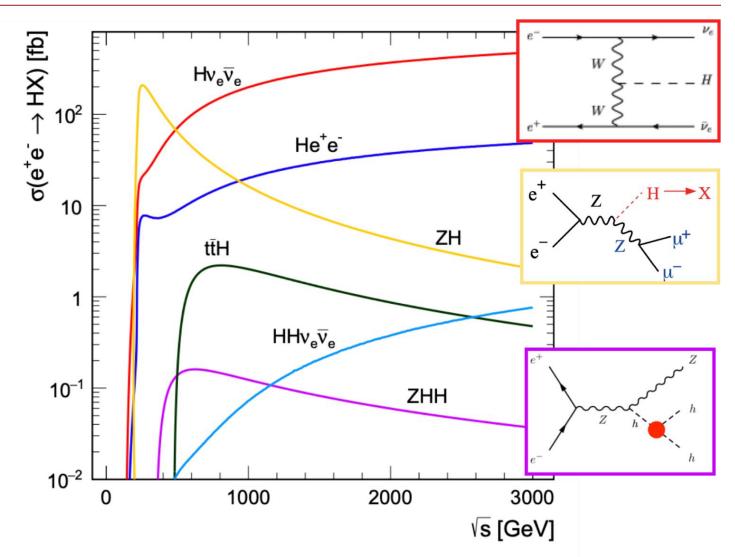

Wish list beyond HL-LHC:

1. Establish Yukawa couplings to light flavor \Rightarrow needs precision

2. Establish self-coupling \Rightarrow needs high energy

Why e⁺e⁻?

Initial state well defined & polarization \Rightarrow High-precision measurements Higgs bosons appear in 1 in 100 events \Rightarrow Clean environment and trigger-less readout

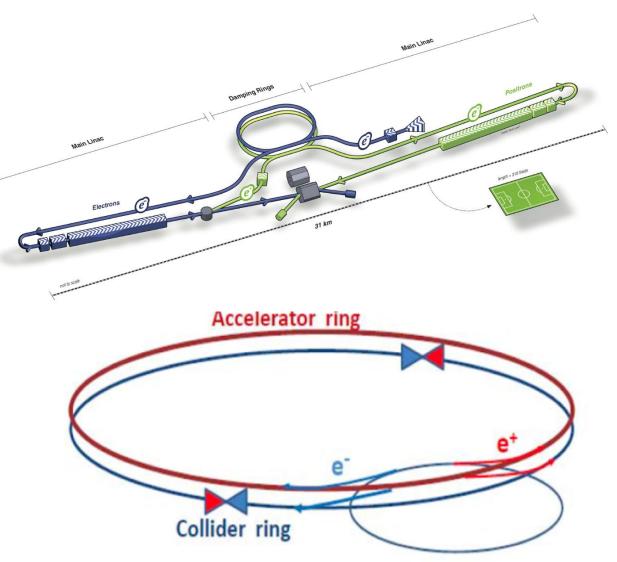

Higgs Production at e⁺e⁻

ZH is dominant at **250 GeV** Above **500 GeV**

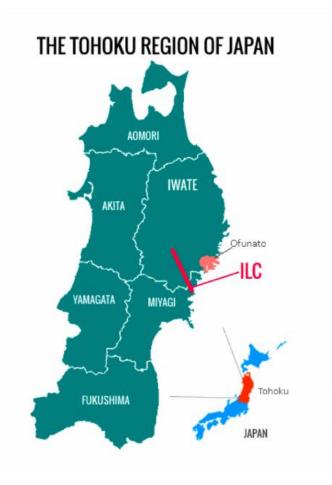
- Hvv dominates
- ttH opens up
- HH production accessible with ZHH
- An orthogonal dataset at 550 GeV to cross-check a deviation from the SM
- From 500 to 550 GeV a factor 2 improvement to the **top-Yukawa** coupling
- O(20%) precision on the Higgs **self-coupling**

LINAC 2022

SLAC


Linear vs. Circular

Linear e⁺e⁻ colliders: ILC, C³, CLIC


- Reach higher energies (~TeV), and can use polarized beams
- Relatively low radiation
- Collisions in bunch trains

Circular e⁺e⁻ colliders: FCC-ee, CEPC

- Highest luminosity collider at Z/WW/ZH
- limited by synchrotron radiation above 350 – 400 GeV
- Beam continues to circulate after collision

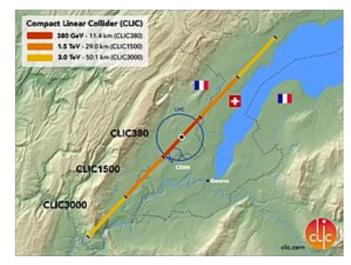
Various Proposals

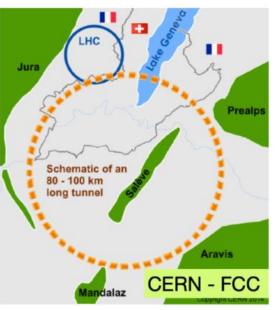
ILC

SLAC

250/500 GeV

LINAC 2022

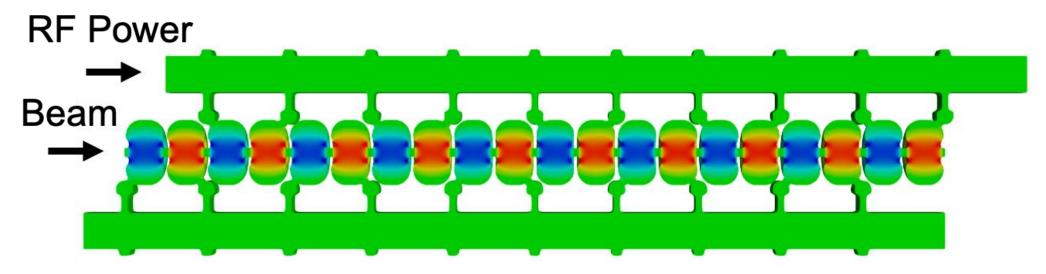

CEPC 240 GeV


> FCC-ee 240/365 GeV

COOL COPPER COLLIDER

250/550 GeV ... > TeV

CLIC 380/1000/3000 GeV



BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT

A novel route to a linear e⁺e⁻ collider...

Breakthrough in the Performance of RF Accelerators

RF power coupled to each cell – no on-axis coupling Full system design requires modern virtual prototyping

Electric field magnitude produced when RF manifold feeds alternating cells equally

Optimization of cell for efficiency (shunt impedance)

- $R_s = G^2/P \text{ [M}\Omega/\text{m]}$
- Control peak surface electric and magnetic fields

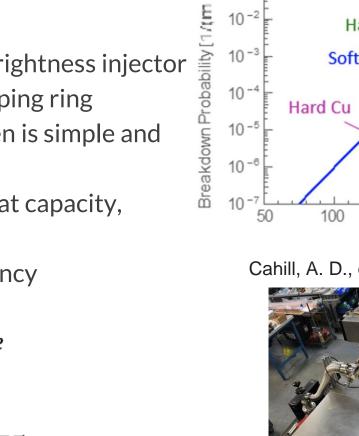
Key to high gradient operation

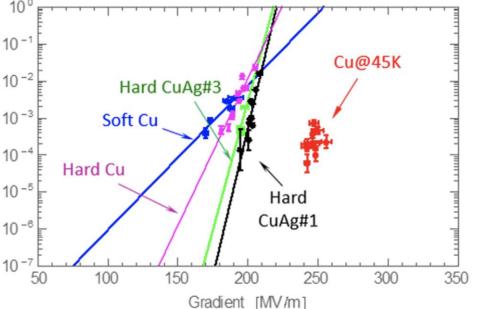
SLAC LINAC 2022

Tantawi, Sami, et al. *PRAB* 23.9 (2020): 092001.

Cryo-Copper: Enabling Efficient High-Gradient Operation

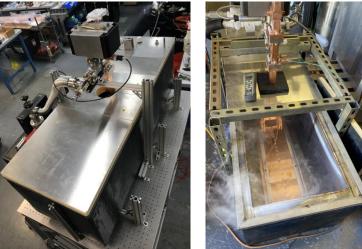
pulse)]


Cryogenic temperature elevates performance in gradient


- Material strength is key factor
- Impact of high fields for a high brightness injector may eliminate need for one damping ring
 Operation at 77 K with liquid nitrogen is simple and practical
- Large-scale production, large heat capacity, simple handling
- Small impact on electrical efficiency

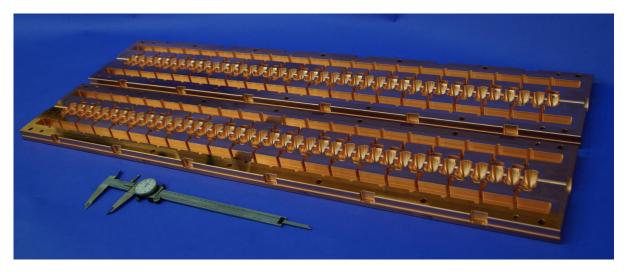
$$\eta_{cp} = LN \ Cryoplant$$

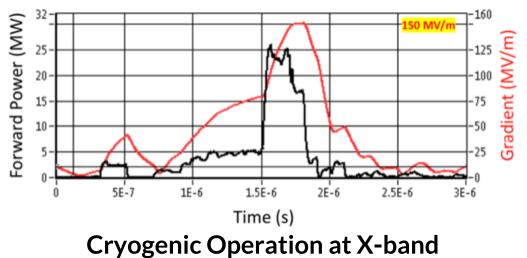
 $\eta_{cs} = Cryogenic \ Structure$
 $\eta_k = RF \ Source$


$$\frac{\eta_{cs}}{\eta_k}\eta_{cp}\approx \frac{2.5}{0.5}[0.15]\approx 0.75$$

LINAC 2022

Cahill, A. D., et al. PRAB 21.10 (2018): 102002.

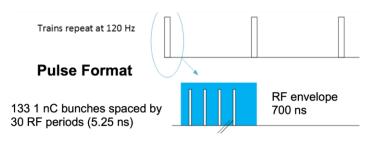

C³ combines these advances


• Dramatically improving efficiency and breakdown rate

Distributed power to each cavity from a common RF manifold

Operation at cryogenic temperatures ($LN_2 \sim 80 \text{ K}$) Robust operations at high gradient: 120 MeV/m Scalable to multi-TeV operation

C³ Prototype One Meter Structure



High Gradient Operation at 150 MV/m

High Power Test at Radiabeam (Room Temp and Cryo)

Power Consumption and Sustainability

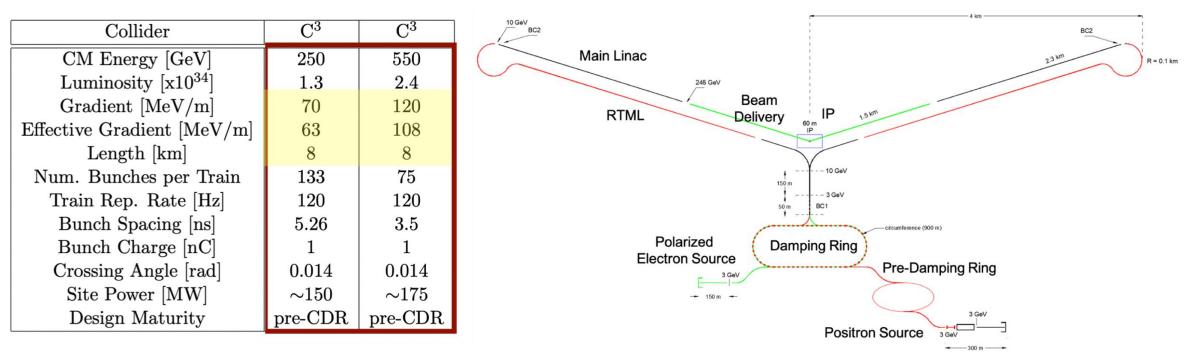
Compatibility with Renewables Cryogenic Fluid Energy Storage

Temperature (K)	77
Beam Loading (%)	45
Gradient (MeV/m)	70
Flat Top Pulse Length (μ s)	0.7
Cryogenic Load (MW)	9
Main Linac Electrical Load (MW)	100
Site Power (MW)	~150

Intermittent and variable power production from renewables mediated with commercial scale energy storage and power production

250 GeV CoM - Luminosity - 1.3x10³⁴

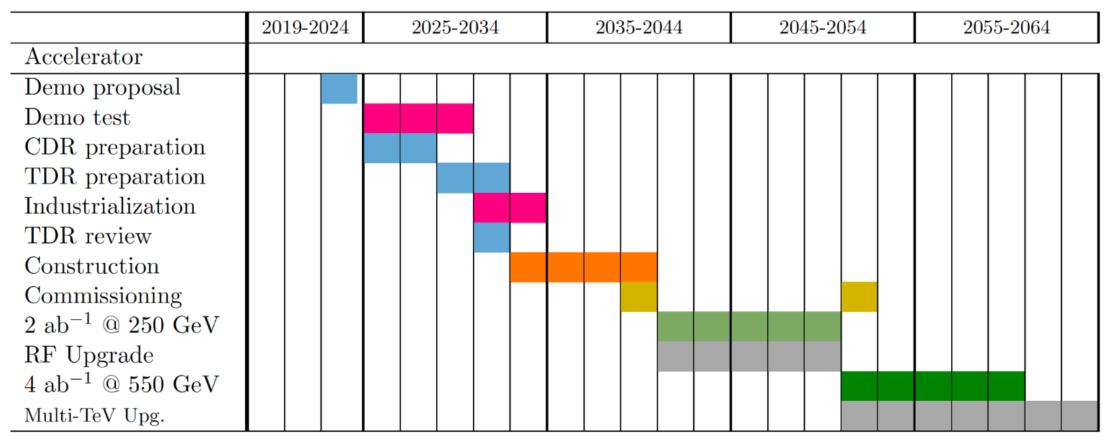
Parameter	Units	Value
Reliquification Plant Cost	M\$/MW	18
Single Beam Power (125 GeV linac)	MW	2
Total Beam Power	MW	4
Total RF Power	MW	18
Heat Load at Cryogenic Temperature	MW	9
Electrical Power ML	MW	40
Electrical Power For Cryo-Cooler	MW	60
Accelerator Complex Power	MW	~50
Site Power	MW	~150



8 km footprint for 250/550 GeV CoM \Rightarrow 70/120 MeV/m

• 7 km footprint at 155 MeV/m for 550 GeV CoM – present Fermilab site Large portions of accelerator complex are compatible between LC technologies

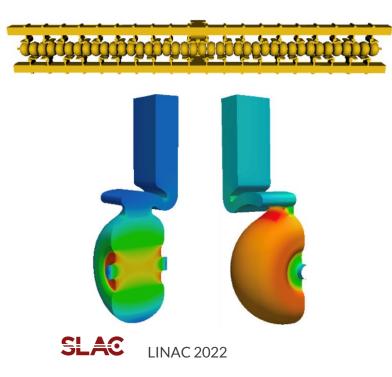
- Beam delivery and IP modified from ILC (1.5 km for 550 GeV CoM)
- Damping rings and injectors to be optimized with CLIC as baseline
- New opportunities to improve Beam Delivery and footprint

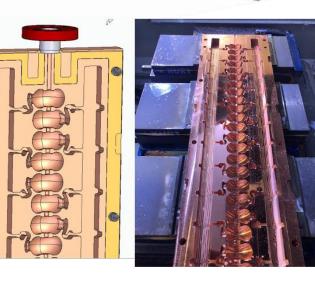

C³ Parameters

C³ - 8 km Footprint for 250/550 GeV

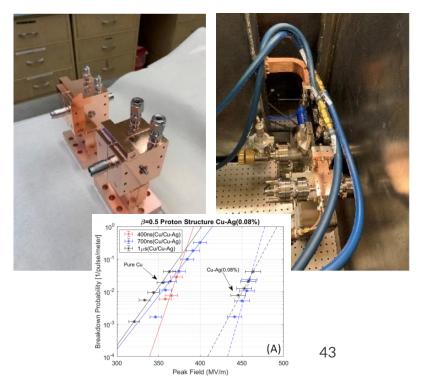
C³ Technical Timeline for 250/550 GeV CoM

Technically limited timeline following community engagement through the full Snowmass process to define the parameters of the C³ proposal



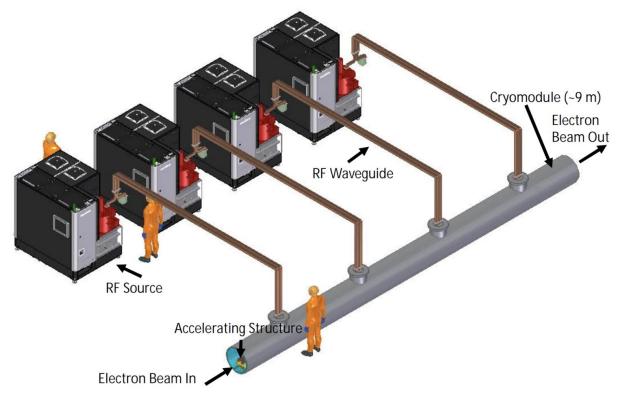

Ongoing Prototype Structure Development

Incorporate the two key technical advances: Distributed Coupling and Cryo-Copper RF Main linac utilizes meter-scale accelerating structures, technology demonstration underway Implement optimized rf cavity designs to control peak surface fields

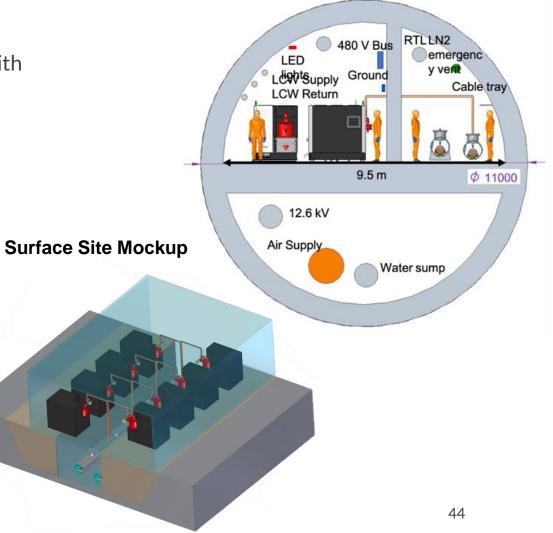

One meter (40-cell) C-band design with reduce peak E and H-field

Scaling fabrication techniques in length and including controlled gap

LANL Test of single cell SLAC Cband structure

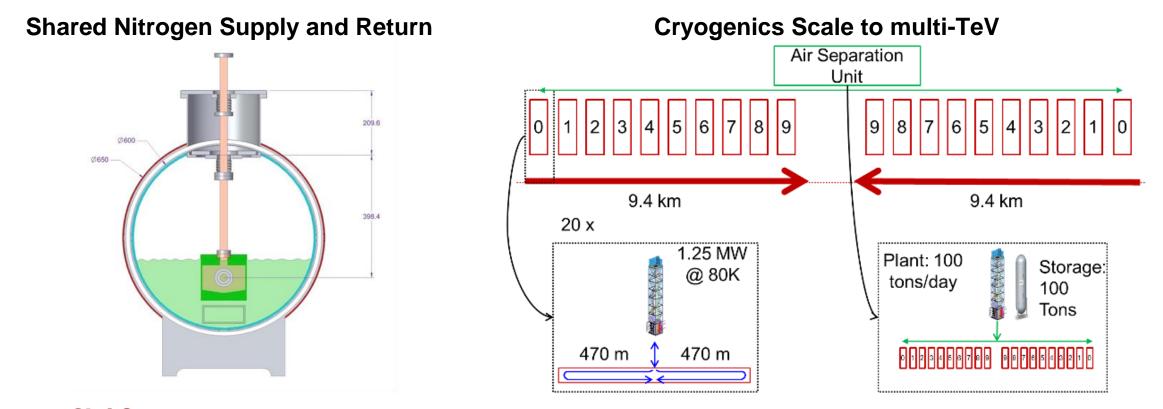


Tunnel Layout for Main Linac 250/550 GeV CoM


Need to optimize tunnel layout – first study looked at 9.5 m inner diameter in order to match ILC costing model

• Must minimize diameter to reduce cost and construction time Surface site (cut/cover) provides interesting alternative – concerns with length of site for future upgrade

> Cryomodule Unit - 9 m (630 MeV/1 GeV)



Usable Tunnel Width - 9.5 m (Same tunnel width as ILC)

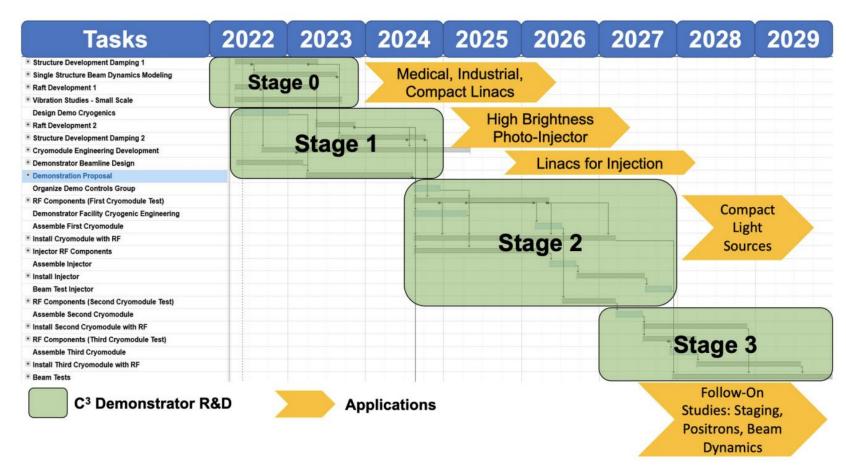
Cryomodule Design Scalable from 250 GeV to multi-TeV

X-band structure demonstrated full average power over short length (0.25 m) Cryomodule design developed for cryoplant layout to cool 1.2 MW/km thermal load at 77K

LINAC 2022

45

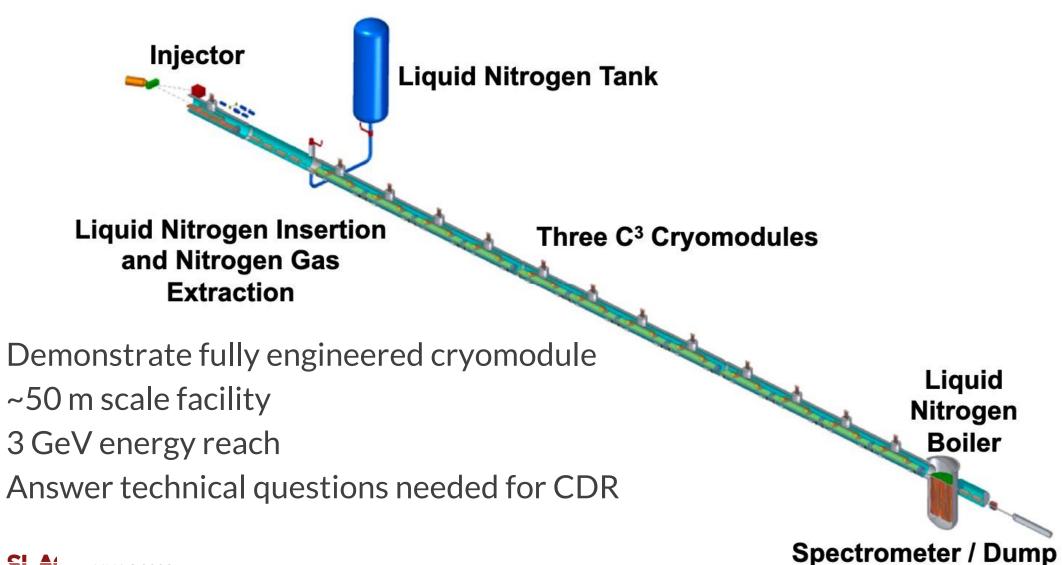
BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT


Outlook

C³ Demonstration R&D Plan

C³ demonstration R&D needed to advance technology beyond CDR level Minimum requirement for Demonstration R&D Plan:

- Demonstrate operation of fully engineered and operational cryomodule
 - Simultaneous operations of min. 3 cryomodules
- Demonstrate operation during cryogenic flow equivalent to main linac at full liquid/gas flow rate
- Operation with a multi-bunch photo injector high charges bunches to induce wakes, tunable delay witness bunch to measure wakes
- Demonstrate full operational gradient 120 MeV/m (and higher > 155 MeV/m) w/ single bunch
 - Must understand margins for 120 targeting power for (155 + margin) 170 MeV/m
 - 18X 50 MW C-band sources off the shelf units
- Fully damped-detuned accelerating structure
- Work with industry to develop C-band source unit optimized for installation with main linac
 This demonstration directly benefits development of compact FELs, beam dynamics, high brightness guns, *etc.* The other elements needed for a linear collider the sources, damping rings, and beam delivery system more advanced from the ILC and CLIC need C³ specific design
 - Our current baseline uses these directly; will look for further cost-optimizations for of C³


C³ Demonstration R&D Plan timeline

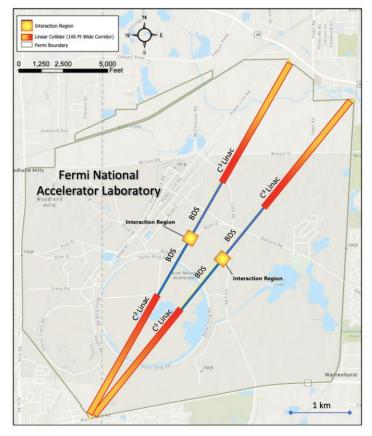
High Energy Physics: Caterina Vernieri <u>caterina@slac.stanford.edu</u> Accelerator Science & Engineering: Emilio Nanni <u>nanni@slac.stanford.edu</u> C³ R&D, System Design and Project Planning are ongoing

- Early career scientists should help drive the agenda for an experiment they will build/use
- Many opportunities for other institutes to collaborate on:
 - beam dynamics, vibrations and alignment, cryogenics, rf engineering, controls, detector optimization, background studies, etc.

The Complete C³ Demonstrator

Conclusion

LINAC 2022


Next C³ Workshop in Planning – Oct. 13-14th @ SLAC

https://indico.slac.stanford.edu/event/7315/

C³ can provide a rapid route to precision Higgs physics with a compact 8 km footprint

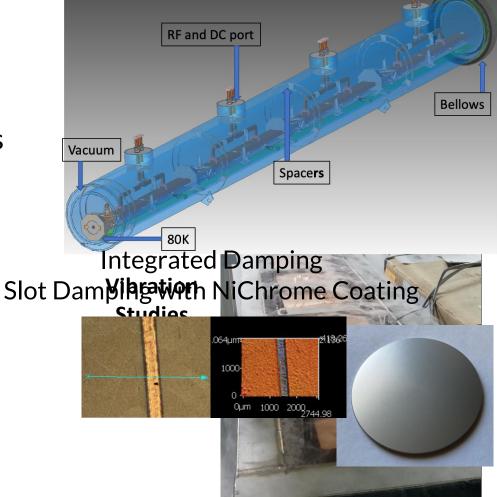
- Higgs physics run by 2040
- Possibly, a US-hosted facility

 C^3 time structure is compatible with SiD-like detector overall design and ongoing optimizations. C^3 can be quickly be upgraded to 550 GeV C^3 can be extended to a multi-TeV e+e- collider

More Details Here (Follow, Endorse, Collaborate):

https://indico.slac.stanford.edu/event/7155/

Accelerator Design and Challenges

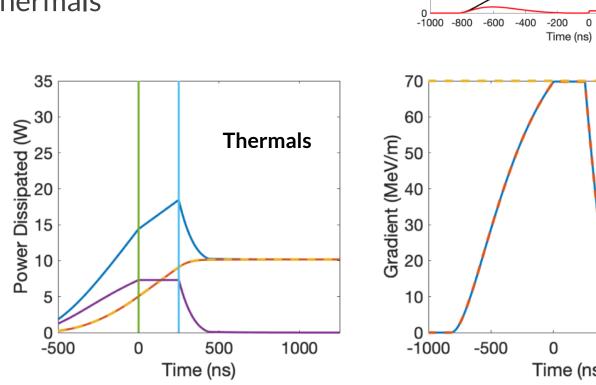

Accelerator Design

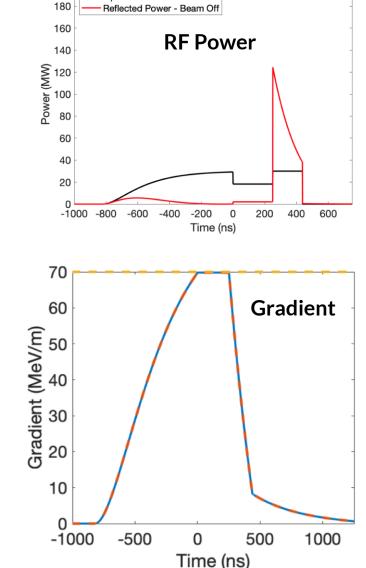
 Engineering and design of prototype cryomodule underway

Focused on challenges identified with community through Snowmass

- Gradient Scaling up to meter scale cryogenic tests
- Vibrations Measurements with full thermal load
- Alignment Working towards raft prototype
- Cryogenics Two-phase flow simulations to full flow tests
- Damping Materials, design and simulation
- Beam Loading and Stability Thermionic beam test
- Scalability Cryomodules and integration
 Laying the foundation for a demonstration program
 to address technical risks beyond RDR (CDR) level

RF Power Requirements


70 MeV/m 250 ns Flattop (extendible to 700 ns) ~1 microsecond rf pulse, ~30 MW/m Conservative 2.3X enhancement from cryo

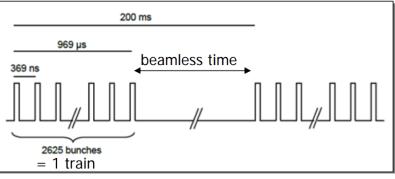

No pulse compression

Ramp power to reduce reflected power Flip phase at output to reduce thermals

One 65 MW klystron every two meters -> Matches CLIC-k rf module power

LINAC 2022

200


Input Power

Beam Format and Detector Design Requirements

ILC timing structure: Fraction of a percent duty cycle

- Power pulsing possible, significantly reduce heat load
 - Factor of 50-100 power saving for FE analog power
- Tracking detectors **don't need active cooling**
 - Significantly reduction for the material budget
- Triggerless readout is the baseline
- C³ time structure is compatible with SiD-like detector overall design and ongoing optimizations

ILC timing structure

1 ms long bunch trains at 5 Hz 2820 bunches per train 308ns spacing

C³ timing structure

Collider

 σ_z

 β_x

 β_y

 ϵ_x

 ϵ_y

N bunches

Repetition rate

Crossing angle

Crab angle

ILC

 $300 \ \mu m$

8.0 mm

0.41 mm

500 nm/rad

35 nm/rad

1312

5 Hz

0.014

0.014/2

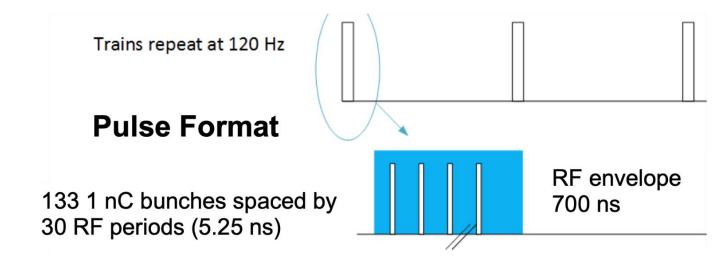
CCC

 $100 \ \mu m$

13 mm

0.1 mm

900 nm/rad


20 nm/rad

133

120 Hz

0.020

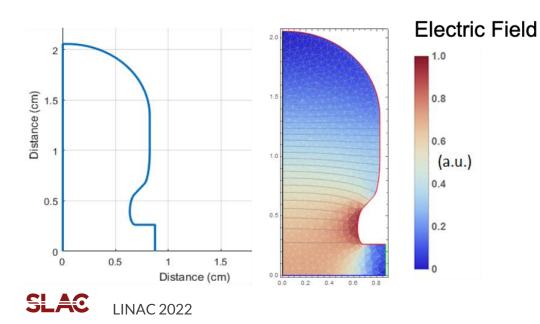
0.020/2

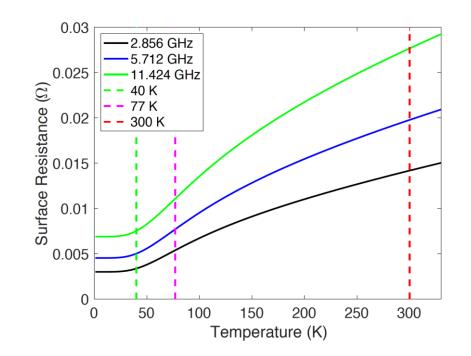
Full Parameters

Collider	NLC[28]	CLIC[29]	ILC ⁵	C^3	C^3
CM Energy [GeV]	500	380	250(500)	250	550
$\sigma_z \; [\mu { m m}]$	150	70	300	100	100
$eta_x [ext{mm}]$	10	8.0	8.0	12	12
$eta_y [ext{mm}]$	0.2	0.1	0.41	0.12	0.12
$\epsilon_x \text{ [nm-rad]}$	4000	900	500	900	900
$\epsilon_y \; [\text{nm-rad}]$	110	20	35	20	20
Num. Bunches per Train	90	352	1312	133	75
Train Rep. Rate [Hz]	180	50	5	120	120
Bunch Spacing [ns]	1.4	0.5	369	5.26	3.5
Bunch Charge [nC]	1.36	0.83	3.2	1	1
Beam Power [MW]	5.5	2.8	2.63	2	2.45
Crossing Angle [rad]	0.020	0.0165	0.014	0.014	0.014
Crab Angle	0.020/2	0.0165/2	0.014/2	0.014/2	0.014/2
Luminosity $[x10^{34}]$	0.6	1.5	1.35	1.3	2.4
	(w/ IP dil.)	$(\max is 4)$			
Gradient $[MeV/m]$	37	72	31.5	70	120
Effective Gradient $[MeV/m]$	29	57	21	63	108
Shunt Impedance $[M\Omega/m]$	98	95		300	300
Effective Shunt Impedance $[M\Omega/m]$	50	39		300	300
Site Power [MW]	121	168	125	$\sim \! 150$	$\sim \! 175$
Length [km]	23.8	11.4	20.5(31)	8	8
L* [m]	2	6	4.1	4.3	4.3

Why 550 GeV?

We propose **250 GeV** with a relatively inexpensive upgrade to **550 GeV**

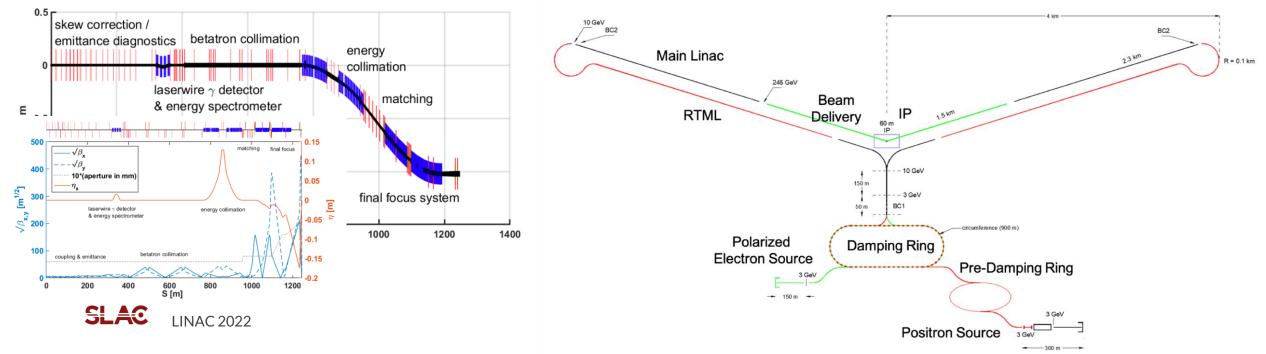

- An orthogonal dataset at 550 GeV to cross-check a deviation from the SM predictions observed at 250 GeV
- From 500 to 550 GeV a factor
 2 improvement to the top Yukawa coupling
- O(20%) precision on the Higgs self-coupling would allow to exclude/demonstrate at 5σ models of electroweak baryogenesis


Collider	HL-LHC	C^3 /ILC 250 GeV	C^3 /ILC 500 GeV
Luminosity	3 ab^{-1} in 10 yrs	2 ab^{-1} in 10 yrs	$+ 4 \text{ ab}^{-1} \text{ in 10 yrs}$
Polarization	-	$\mathcal{P}_{e^+} = 30\%~(0\%)$	$\mathcal{P}_{e^+} = 30\%~(0\%)$
g_{HZZ} (%)	3.2	0.38(0.40)	0.20 (0.21)
g_{HWW} (%)	2.9	0.38(0.40)	0.20(0.20)
g_{Hbb} (%)	4.9	$0.80 \ (0.85)$	0.43(0.44)
g_{Hcc} (%)	-	1.8(1.8)	1.1(1.1)
g_{Hgg} (%)	2.3	1.6(1.7)	0.92(0.93)
$g_{H\tau\tau}$ (%)	3.1	0.95(1.0)	$0.64 \ (0.65)$
$g_{H\mu\mu}$ (%)	3.1	4.0(4.0)	3.8(3.8)
$g_{H\gamma\gamma}$ (%)	3.3	1.1(1.1)	0.97 (0.97)
$g_{HZ\gamma}$ (%)	11.	8.9(8.9)	6.5(6.8)
g_{Htt} (%)	3.5	—	$3.0 (3.0)^*$
g_{HHH} (%)	50	49 (49)	22(22)
Γ_H (%)	5	1.3(1.4)	$0.70 \ (0.70)$

Optimized Cavity Geometries for Standing Wave Linac

Small aperture for reduced phase achieves exceptional Rs Cryogenic operation: Increased Rs, reduced pulse heating

Frequency	a/λ	Phase Adv.	Rs (MΩ/m) 300K	Rs (MΩ/m) – 77K
C-band (5.712 GHz)	0.05	π	121	272
C-band (5.712 GHz)	0.05	2π/3	133	300
X-band (11.424 GHz)	0.1	π	133	300



C³ Accelerator Complex

present these electrical power budgets and their underlying assumptions, and also – in your assessment - the biggest challenges for achieving the design luminosity 8 km footprint for 250/550 GeV CoM \Rightarrow 70/120 MeV/m

- 7 km footprint at 155 MeV/m for 550 GeV CoM present Fermilab site Large portions of accelerator complex are compatible between LC technologies
- Beam delivery and IP modified from ILC (1.5 km for 550 GeV CoM)
- Damping rings and injectors to be optimized with CLIC as baseline
- C3 Investigatisti og Beach Delivery (Adapited from ILC/NLC)

C³ - 8 km Footprint for 250/550 GeV

Collider	NLC	CLIC	ILC	C^3	C^3
CM Energy [GeV]	500	380	250(500)	250	550
Luminosity $[x10^{34}]$	0.6	1.5	1.35	1.3	2.4
Gradient [MeV/m]	37	72	31.5	70	120
Effective Gradient [MeV/m]	29	57	21	63	108
Length [km]	23.8	11.4	20.5(31)	8	8
Num. Bunches per Train	90	352	1312	133	75
Train Rep. Rate [Hz]	180	50	5	120	120
Bunch Spacing [ns]	1.4	0.5	369	5.26	3.5
Bunch Charge [nC]	1.36	0.83	3.2	1	1
Crossing Angle [rad]	0.020	0.0165	0.014	0.014	0.014
Site Power [MW]	121	168	125	$\sim \! 150$	$\sim \! 175$
Design Maturity	CDR	CDR	TDR	pre-CDR	pre-CDR

State of the Art Tunnel Construction

Workshop!

Santa Lucia 8 km Tunnel – 16 m diameter boring machine – 3 yrs Pre-fab concrete lining and service tunnel during excavation

Drop-In Service Tunnel

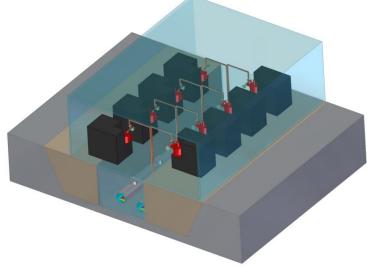
Tunnel Lining

Cut and Cover Construction

Workshop!

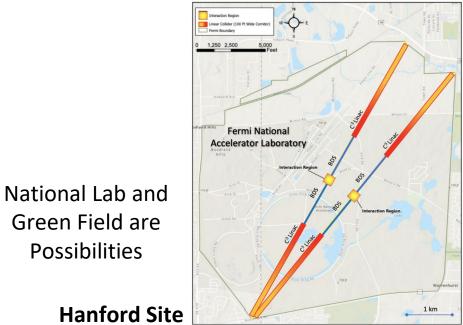
At 8 km surface site becomes a possibility – limited locations could implement an energy upgrade

Could have significant cost / construction timeline impact Was explored in the context of ILC

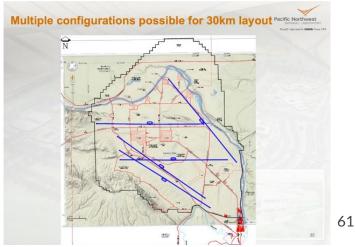

https://agenda.linearcollider.org/eve nt/5468/contributions/24008/attach ments/19666/31204/LCWS-asnerv2.pdf

Civil Construction and Siting

- Compact footprint <8 km for 550 GeV allows for many siting options
- Evaluating both underground and surface sites
 - Underground less constraints on energy upgrade
 - Surface lower cost and faster to first physics


Surface-Site Mockup (Tunnel in White Paper)

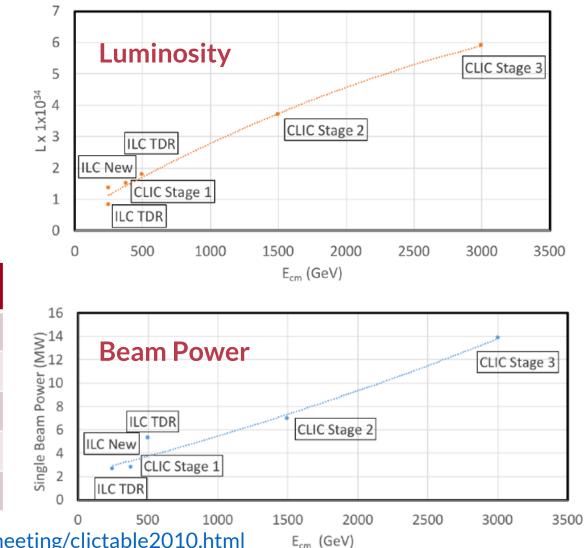
- Rapid Excavation / Parallel Installation
- No Vertical Shafts


Fermilab Site Filler

Hanford Site

Green Field are

Possibilities

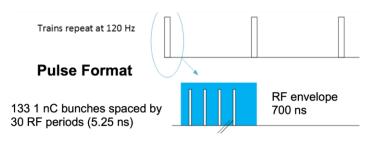


Requirements for a High Energy e⁺e⁻ Linear Collider

Using established collider designs to inform initial parameters

Quantifying impact of wakes requires detailed studies

- Most important terms aperture, bunch charge (and their scaling with frequency)
 Target initial stage design at 250 GeV CoM
 - 2 MW single beam power



C³ Machine CLIC NLC Freq (GHz) 11.4 5.7 12.0 2.75 3.9 2.6 a (mm) Charge (nC) 1.4 0.6 1 6 16 30/20 Spacing (λ) 312 # of bunches 90 133/75

SLAC

https://clic-meeting.web.cern.ch/clic-meeting/clictable2010.html NLC, ZDR Tbl. 1.3,8.3

Power Consumption and Sustainability

Compatibility with Renewables Cryogenic Fluid Energy Storage

Temperature (K)	77
Beam Loading (%)	45
Gradient (MeV/m)	70
Flat Top Pulse Length (μ s)	0.7
Cryogenic Load (MW)	9
Main Linac Electrical Load (MW)	100
Site Power (MW)	~150

Intermittent and variable power production from renewables mediated with commercial scale energy storage and power production

250 GeV CoM - Luminosity - 1.3x10³⁴

Parameter	Units	Value
Reliquification Plant Cost	M\$/MW	18
Single Beam Power (125 GeV linac)	MW	2
Total Beam Power	MW	4
Total RF Power	MW	18
Heat Load at Cryogenic Temperature	MW	9
Electrical Power ML	MW	40
Electrical Power For Cryo-Cooler	MW	60
Accelerator Complex Power	MW	~50
Site Power	MW	~150