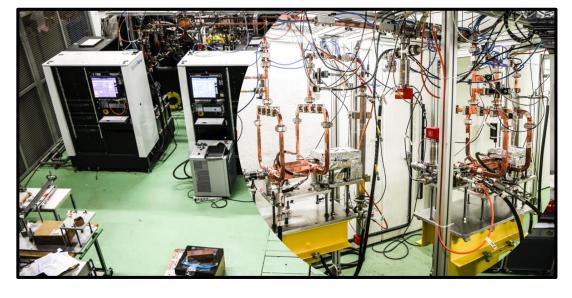
The southern hemisphere's first X-band radio-frequency test facility at the University of Melbourne.

CLIC Project Meeting Dec-2022

X-BAND LABORATORY FOR ACCELERATORS AND BEAMS

<u>Matteo Volpi</u> on behalf of the group:

Suzie L. Sheehy, Roger Rassool, Geoffrey Taylor, Scott David Williams, P. Giansiracusa, P. Pushkarna (The University of Melbourne), Rohan Dowd, (AS - ANSTO)



X-band Laboratory for Accelerators and Beams (X-LAB)

- A new laboratory is under commission at the University of Melbourne (UoM)
 - First high-power, high-frequency accelerator laboratory in the South Hemisphere.
 - Testing high gradient structure prototype and RF components for CLIC
 - Ultra-precision manufacturing
 - Design and develop more widely available high quality x-ray sources
- This project will provide local researchers and students with an opportunity to make significant advances in accelerator design
- Excellent potential for applications in medical radiation therapy and beyond

1/2 XBOX3 => Mel-BOX

Long Journey

On 16 September 2020, a container filled with half of a CERN high-gradient test facility left CERN's Meyrin site to embark on a two-month sea journey to the other side of the world.

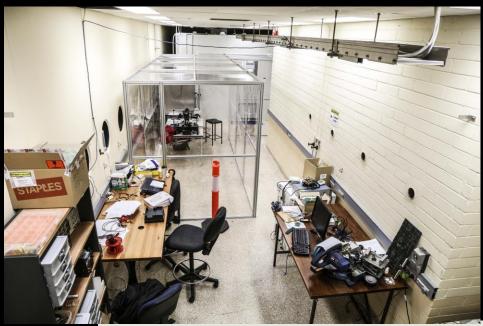
ABOUT

Xcitement down under: Australia gets first X-band facility

Half of a CERN high-gradient test facility embarks on a new life at the University of Melbourne

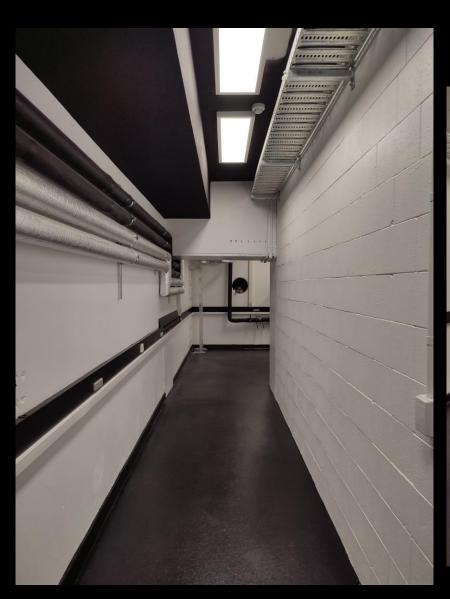
15 JANUARY, 2021 | By Achintya Rao

Melbourne



Melbourne bunker evolution

Melbourne bunker evolution

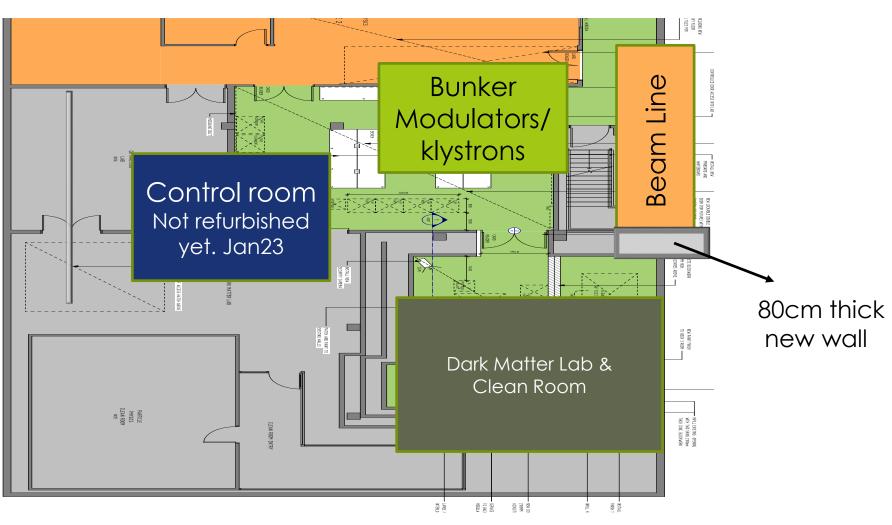

- Previously (1970) used for 35 MeV betatron
- ~80m²: Space for x-band linac and medical applications



Melbourne bunker today

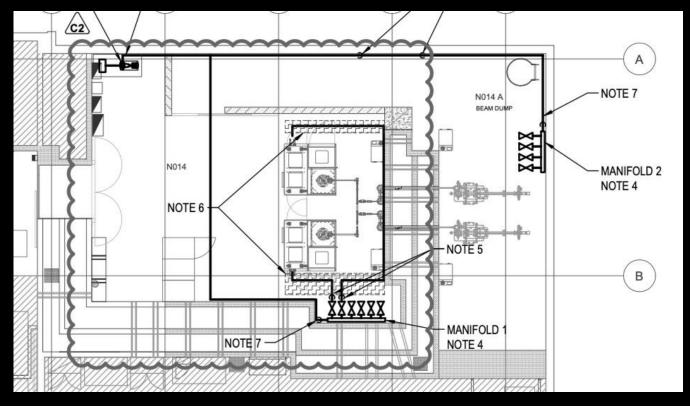
Melbourne bunker today

Mel-Box installation

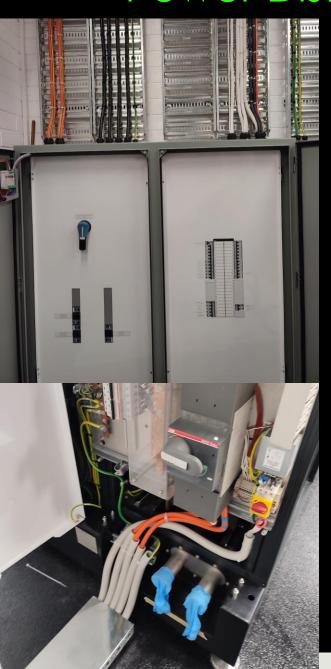

Basement Lab: The "X-Lab"

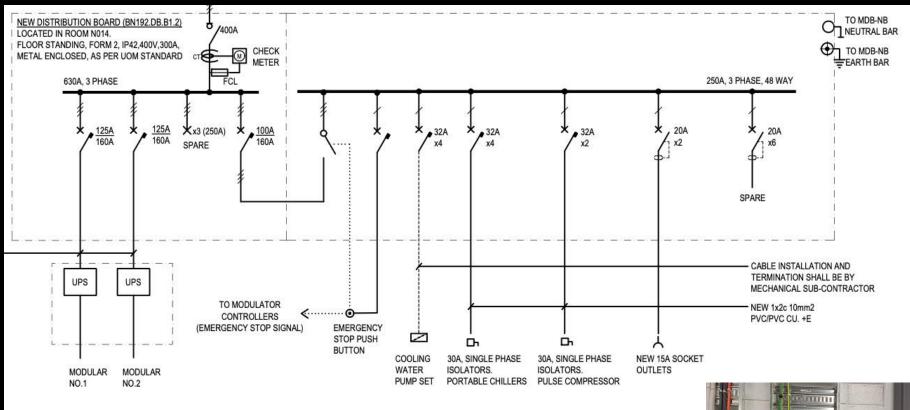
Control room~ 60m² Bunker ~ 50m² Beam Line ~25m²

1-4 MeV proton (beamline test


Pelletron

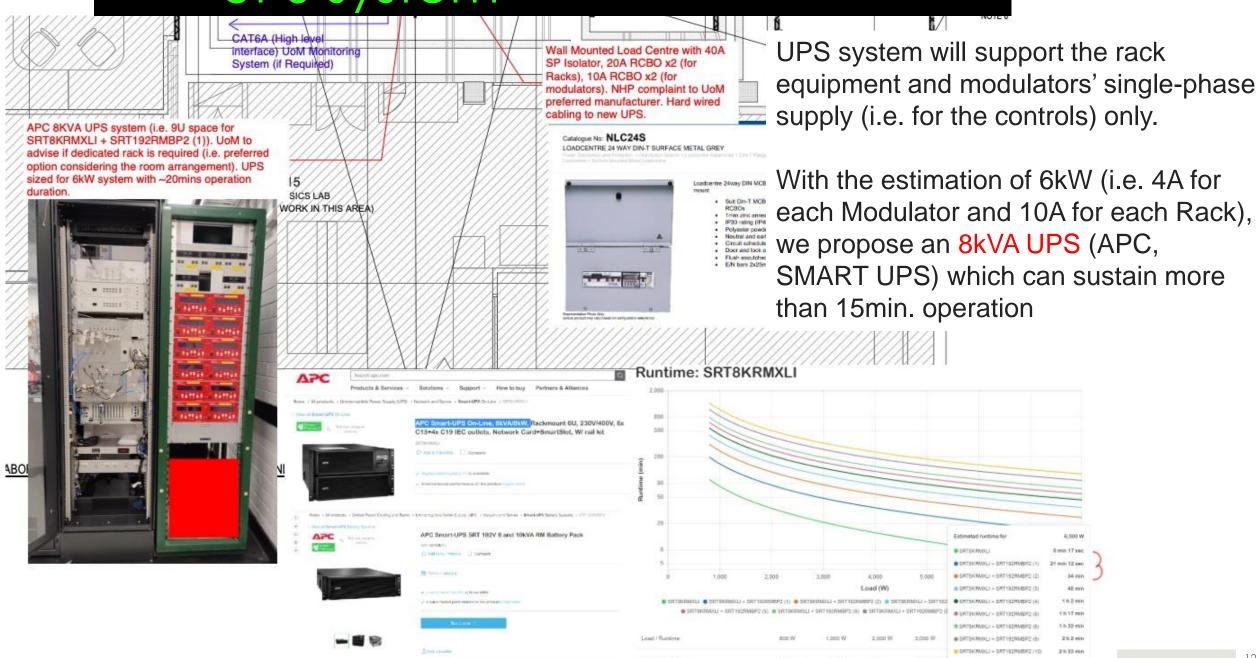
area)

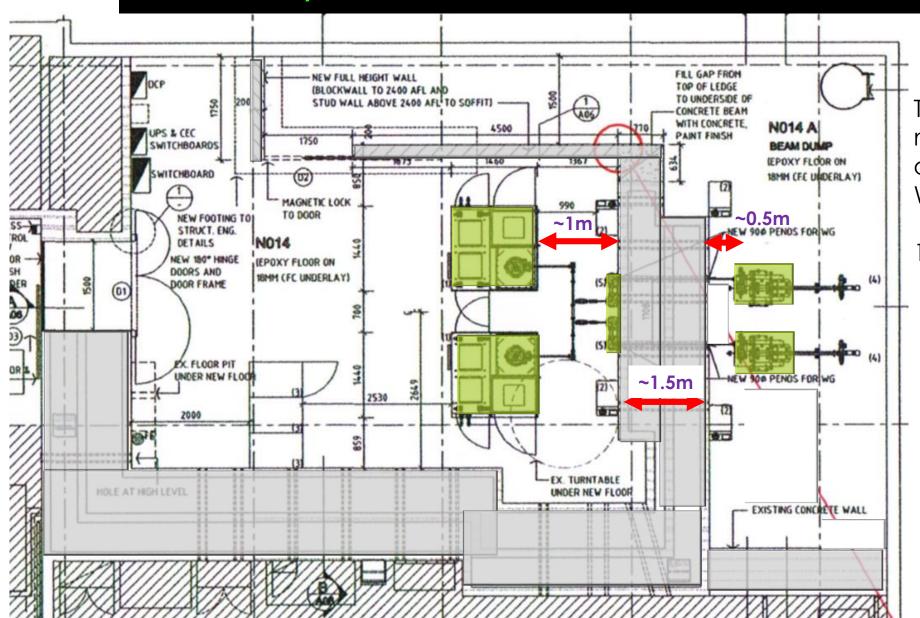

Low Conductivity Water



- Each Modulator unit needs
 - □ Flow: 80-135 l/min. Limited by water pressure max 10 bar.
 - □ Pressure drop: ~4 bar at 80 l/min
 - Water temperature: 10-40C⁰ (non-condensing)
- Temperature interlocks
- Humidity control to prevent dew point
- Insulated water pipes

Power Distribution Units



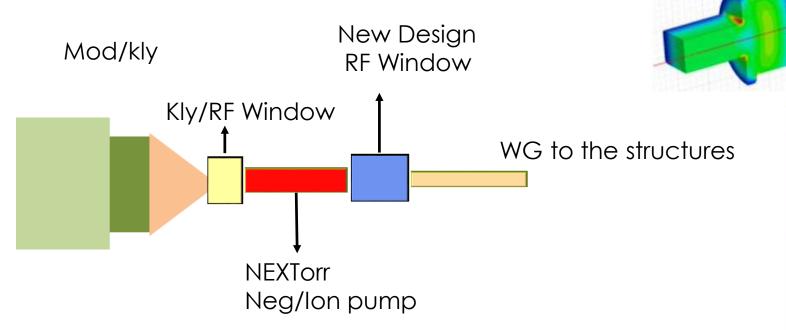

DISTRIBUTION BOARD SCHEMATIC

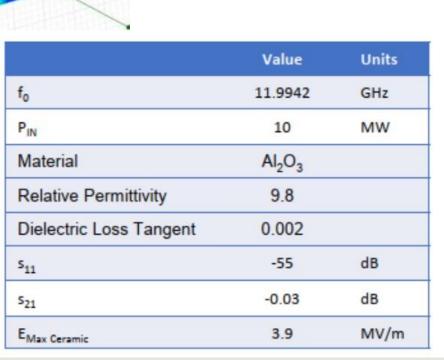
TI CHEST PROPERTY OF

UPS system

Layout of the test stands at X-LAB

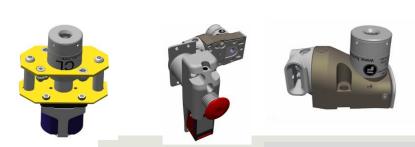
The WG system will be a few meter shorter than the CERN one.

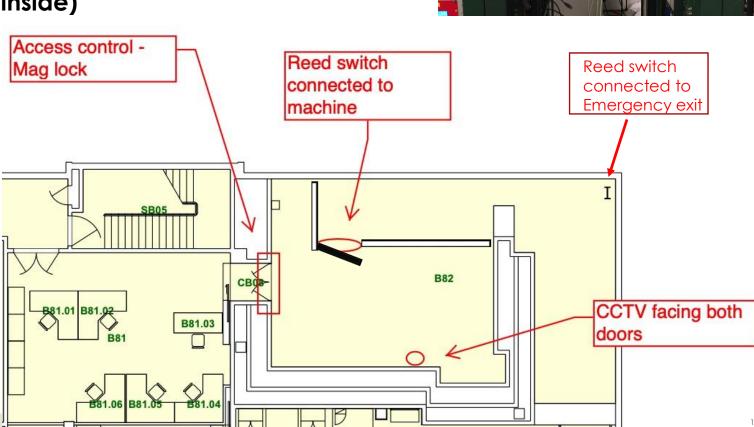

We expect more power!


1m of WG => 0.1dB (2.3%)

What it is different?

We add an extra RF window to each Modulator unit


Compact window with travelling wave in ceramic with higher RF power capacity than in existing device.



Safety, Interlocks and control Algorithms

- Main personal safety issue is X-ray radiation during operation.
 - Interlocks on the bunker door and klystron/modulator access doors
 - Stop modulator pulsing if opened.
 - Modulator interlocked is radiation levels are too high inside or outside of the bunker.
 - Installation of fortress e-stop (limiting switch) for emergency egress (in case lock is engaged with someone inside)
 - Reed switches installed to emergency exit door exiting into loading
 - CCTV camera
- Machine protection issue is from high vacuum and reflected power to the klystron (Same of CERN)

Radiation monitors

Type of Radiation: Gamma and X-Ray.

3x
GM-42 Detector

Geiger Type ZP-1201 or equivalent

Measuring Range $0.1 \,\mu\text{Sv/h}$ to $10 \,\text{mSv/h}$ (0.01 mR/h to 1 R/h)

Sensitivity 17 cps/mR/h

Accuracy ± 10% reading within the measuring range

Energy Range 50 keV - 1.3 MeV

Energy Dependence ± 20%

Angular Dependence Less than ± 20% for ±45° of preferred direction

Temperature Range Operation: -10°C to +50°C

Storage: -20°C to +60°C

Humidity Range 40% to 95% RH (non condensing)

Dimensions: 197 mm (7.75") Length x 38 mm (1.5") Diameter

Weight 250 gr (0.55 lb)

Casing Aluminium, splash proof

Hook-up cable length up to 100 m

Output signals TTL pulses (5V, 5ms)

Detector status logic:

Identification, malfunction, overflow

RADIATION DETECTION

DPU-3 Area Monitor

Part of the WebiSmarts System

DESCRIPTION

WebiSmarts is a web-based software package which receives online radiation data from DPU-3 Area Monitors which are strategically installed throughout the cyclotron lab. Users can access maps showing radiation levels on color-coded points therefore presenting a detailed yet concise radiological map.

The DPU3 is the latest addition to the renowned MediSmarts Area and Stack Monitoring System. Combining the same respected reliability which has made MediSmarts a world leader, with the latest state-of-the-art technology, the DPU3 brings the 21st century into your laboratory. The plastic (IP65) cased data processing unit is capable of supporting one internal and three external detectors.

FEATURES

- Automatic recognition of detectors
- Supports our full range of detectors and others
 Provides Wi-Fi, Ethernet, PoE, Xbee, RS-485 and USB connectivity
- The wide screen TFT color Display is configurable to show any of the parameters
 The Display can be setup to show up to four
- displays simultaneously

 Optional battery backup for nine hours after
- Free software for diagnostics

power failure

- Calibration performed via the touch panel or remotely
- Data records are internally saved for a period of one month in cyclic fashion

Measuring Range: 0.1 uSv/h to 10 Sv/h (0.01 mR/h to 1,000 R/h)

· Sensitivity: 17 cps/mR/h, 0.3 cps/mR/h

Energy Range: 50 keV to 1.3 MeV

· Accuracy: ±10% over the full measuring range

Looking for monitor software ©

NOTE: Radiation Management Licence (RML) submitted, covering all ionising radiation activities within the University

Local Manufacturing

- Australian National Fabrication Facility (ANFF): already manufactured a W90 to waveguide adaptor
- Making progress:
 - tried diamond milling on the new precision 7 axis machine
 - capability upgrades of ultra-high precision turning and milling machines.
 - looking for CMM
- Thy to make the disk just after Christmas.
- NOTE: for beam line commissioning we would like to use a 100keV DC photogun.
 - We are investigating the use and "manufacture" a low beta acceptance X-band accelerating structure. (S. Williams, IPAC2022, Bangkok, Thailand, ACoW Publishing ISBN: 978-3-95450-227-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2022-THPOST006)

Specification

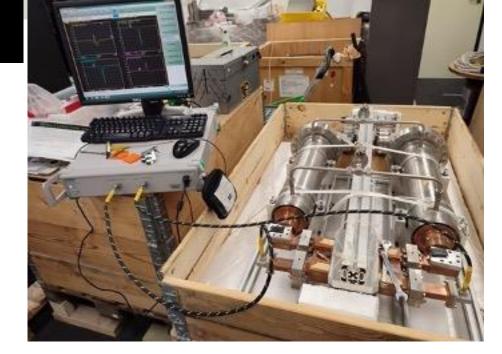
ANFF-SA were tasked to fabricate 1 W90 adaptor flange from 316LN to drawing specification 2021 052 F P001.



Fig 1. Images of finished part (front and back).

Short term plan

- Instrumentation available.
 - 2 Port VNA
 - 2 x power Meters
 - RF pulse generator
 - Baking RF structure/components: vacuum oven available at the Aus. Synchrotron (AS) 1e-3 @ 200 degC
- ToDo list
 - Modulators commissioning/conditioning (Feb 2022)
 - Extra RF Windows + load, only
 - Baking RF structure/components
 - Bead-pull (structures)
 - Pulse compressors calibration


 - Rebuild the WG system

Before tuning

After tuning

Conclusion

- The project is moving forward, many thanks to the CLIC collaboration
 - Refurbishment of the bunker is ready, it will be commission before the end of the year
 - Modulator commissioning Feb 2023
- Welcome to visit the facility!
 - Help and support are more than welcome!
- Warmest Wishes from all Mel-team!

LCW

LCW-HE

SONDEX°

Danfoss HEXSelector 1.0.20-beta.940

#36-211112144802

Customer		Date	12/11/2021
Project	UoM- XBOX	Engineer	Sandeep Jain
НЕХ Туре	S7A-ST16	Contact Person	
		E-mail	
Units Connected	1 (Parallel)		

Calculated Parameters	Unit	Side 1		Side 2
Flow Type		CounterCurrent		
Heat Load	kW		42.00	
Inlet Temperature	°C	18.6		9.0
Outlet Temperature	°C	16.0		14.0
Mass Flow Rate	kg/s	3.86		2.01
Volumetric Flow Rate	L/min	232.07		120.41
Total Pressure Drop	kPa	24.88		6.30

Properties of Fluid	Unit	Side 1	Side 2
Fluid		Water	Water
Liquid Viscosity	mPa⋅s	1.0705	1.2637
Liquid Density	kg/m³	999.2405	1000.1273
Liquid Heat Capacity	kJ/kg.K	4.1795	4.1855
Liquid Thermal Conductivity	W/m·K	0.5911	0.5786

Side 2			
0.4			
AISI316L			
437			
40			
2.4			
Category C2L			
BLUE RAL 5010			
pipe BSP, AISI 316			
pipe BSP, AISI 316			
0.0			
90.0			
10.0			
13.0			
10.0			

H61.2-1.0.20-beta.940

Company name: Automatic Heating
Created by: Gilberto Aguja

Phone: 1800 337 959
Email: gilberto.aguja@automaticheating.com.au

Date: 05/11/2021

Qty. | Description

CRI 15-7 A-FGJ-A-E-HQQE

Note! Product picture may differ from actual product

Product No.: On request

Vertical, multistage centrifugal pump with inlet and outlet ports on same the level (inline). Pump materials in contact with the liquid are in stainless steel. A cartridge shaft seal ensures high reliability, safe handling, and easy access and service. Power transmission is via a rigid split coupling. Pipe connection is via combined DIN-ANSI-JIS flanges.

The pump is fitted with a 3-phase, fan-cooled asynchronous motor.

Liquid:

Pumped liquid: Water

Liquid temperature range: -20 .. 120 °C
Selected liquid temperature: 16 °C
Density: 998.9 kg/m³

Technical:

20