Connecting Lab-Based Attosecond Science with FEL research

Marc Vrakking

FOM Institute AMOLF

Max-Born-Institut

Max-Born-Institut (MBI), Berlin, DE

FOM Institute for Atomic and Molecular Science (AMOLF), Amsterdam, NL

CERN Colloquium 27-1-2011

Collaborators

Tatiana Marchenko

Sebastian Zamith

Johan Mauritsson Per Johnsson Marko Swoboda Kathrin Kluender Anne L'Huillier

Thomas Schlatholter Ronnie Hoekstra Ina Blank

David Holland

Willem Vermin

Freek Kelkensberg Wing Kiu Siu Georg Gademann Ymkje Huismans Aneta Smolkowska Arnaud Rouzee Arjan Gijsbertsen

Max-Born-Institut

Olga Smirnova Alex Harvey

Imperial College London

Misha Ivanov

Dieter Bauer

Ken Schafer

Robert Lucchese

Franck Lépine Chrisian Bordas

MOM

Sergei Prophuzhenko

Stefan Düsterer Nikola Stojanovic Franz Tavella Armin Azima Michael Gensch **Rolf Treusch** + the machine group

DESY

FOM Institute for **Plasma Physics** Rijnhuizen

> Joost Bakker Britta Redlich Lex van der Meer Giel Berden

Kiyoshi Ueda Hironobu Fukozawa Avako Yamada

Irina Znakovskaya Sergey Zherebtsov Matthias Kling

Frank Filsinger Jochen Küpper + ASG

Michael Spanner

Novel XUV/x-ray sources (HHG and FELs) allow to push atomic & molecular science beyond the present state-of-the-art

☆Temporal properties → Electron dynamics

Example:

Attosecond time-resolved pump-probe spectroscopy in H₂ Wavepacket interferometry experiments give access to attosecond electron dynamics

↔Wavelength properties → Nuclear dynamics

Example:

Molecular frame photo-emission gives access to (time-dependent) orbital and structural information – pump-probe spectroscopy at FLASH/LCLS and using an HHG source

Making Attosecond Pulses: High Harmonic Generation

Intense near-infrared femtosecond laser

<u>Step 1</u>: ionization and removal of an electron from the positive ion core

> Step 2: acceleration of the electron in the oscillatory laser field

<u>Step 3</u>: recombination, accompanied by the emission of an XUV photon

Intense near-infrared femtosecond laser + XUV radiation

Nicole et.al., Phys. Rev.

Guertler et.al., Phys. Rev. Lett. 92, 063901 (2004)

1. Application of Attosecond Pulses to Molecular Science

Answer:

- Any light-induced photo-chemical process starts with an electronic interaction; atomic motion sets in after coupling of electronic and nuclear degrees of freedom
- Many light-induced interactions involve multiple electrons – when is coupling of electronic degrees of freedom important?

XUV-IR Pump-probe experiments on H_2 and D_2

Use isolated attosecond pulse generated in Krypton to launch a wavepacket on the $2p\sigma_u^+$ state or the $1s\sigma_g^+$ state and investigate the subsequent IR interaction

Momentum distribution as a function of XUV-IR time-delay

Vibrational wave packet measured by R-dependence of bond softening

Assignment of observed quantum beats in bond softening signal

Phys. Rev. Lett. 103, 123005 (2009)

Momentum distribution as a function of XUV-IR time-delay

Localized States of H₂⁺

The $2p\sigma_u^+$ and $1s\sigma_g^+$ states can be viewed as bonding and anti-bonding combinations of 1s atomic orbitals

$$\begin{aligned} |g\rangle = &\frac{1}{\sqrt{2}} \left(|1s_{left}\rangle + |1s_{right}\rangle \right) \\ |u\rangle = &\frac{1}{\sqrt{2}} \left(|1s_{left}\rangle - |1s_{right}\rangle \right) \end{aligned}$$

Therefore, the nuclear wave function can also be expressed on a basis of localized states

$$\begin{split} |l\rangle = &\frac{1}{\sqrt{2}} \left(|g\rangle + |u\rangle \right) \\ |r\rangle = &\frac{1}{\sqrt{2}} \left(|g\rangle - |u\rangle \right) \end{split}$$

By projecting onto these states the fraction of the wave function that is on the left or right side of the molecule can be determined

Electron localization in XUV-IR dissociative ionization of H₂ and D₂

Nature 465, 763 (2010)

Mechanism I:

Mechanism II:

Conclusion

A localization of the electronic charge distribution in H_2 has been measured that depends – with attosecond time-resolution – on the delay between an isolated attosecond XUV "pump" pulse and an IR "probe" pulse

→Mechanism I: laser-driven population transfer between the $1s\sigma_g$ and the $2p\sigma_u$ electronic states (transition from adiabatic to diabatic dynamics) coupling of electronic and nuclear degrees of freedom

→ Mechanism II: interference between a dissociation channel involving the Q_1 auto-ionizing states and excitation of the $2p\sigma_u$ dissociative state accompanied by IR interaction with the continuum electron electron

In addition evidence has been obtained for modification of XUV photoexcitation as a result of an IR-laser induced polarization in the ground or ionic state \rightarrow relevant to the use of x-ray probing of electron localization in molecules

Electron localization in XUV-IR dissociative ionization of H₂ and D₂

Nature 465, 763 (2010)

Improving VMI Technology: An imaging spectrometer with integrated gas injection

Xe at 532 nm; ∆E/E ~ 2% O.Ghafur et al, Rev. Sci. Instrum. 2009

Cached - Similar pages

[PDF] The SEM examination of geological samples with a semiconductor ... File Format: PDF/Adobe Acrobat - View as HTML

Improving VMI Technology – 2 Use of the Medipix detectors (with NIKHEF)

read-out cell

Velocity map imaging using the Medipix Detector

15kV @ base pressure

Test-experiment: 4-photon ionization of Xe, producing electrons 0.53 and 1.83 eV kinetic energy (before 500acceleration)

Influence of electron kinetic energy

Pressure dependence (He)

Exploiting the timing capabilities of the Timepix detector : slicing

center slice

COLTRIMS using Medipix

Vibrational wave packet measured by R-dependence of bond softening

Novel XUV/x-ray sources (HHG and FELs) allow to push atomic & molecular science beyond the present state-of-the-art

☆Temporal properties → Electron dynamics

Example:

Attosecond time-resolved pump-probe spectroscopy in H₂ Wavepacket interferometry experiments give access to attosecond electron dynamics

♦ Wavelength properties → Nuclear dynamics

Example:

Molecular frame photo-emission gives access to (time-dependent) orbital and structural information – pump-probe spectroscopy at FLASH and using an HHG source

2. Using measurements of MF-PADs to reveal time-dependent structural changes

- Pump-pump-probe experiments at FLASH and LCLS:
 XUV ionization of dissociating, laser-aligned molecules
- Pump-probe experiments using a HHG source: MF-PADs for XUV ionization of laser-aligned molecules

Femtosecond time-delay holography at FLASH (Chapman et al.)

Time-delay x-ray hologram of 140 nm polystyrene spheres performed with 32 nm FLASH radiation

H. Chapman, Nature 448, 676 (2007)

Using intra-molecular electron diffraction and interference to measure (time-resolved) molecular structure

Landers et al, Phys. Rev. Lett. 87, 013002 (2001)

C(1s) core-shell photo-emission from CO using 294 to 326 eV radiation.

Away from the Carbon atom (black) the angular distribution is relatively unstructured.

In the direction of the Oxygen atom (red) a diffraction structure is observed.

Using intra-molecular electron diffraction and interference to measure (time-resolved) molecular structure

Proof of concept: Shoot electron at its own atom

micropulse energies ~ 1 mJ @ 0.4% rms BW secondary focus at user experiments

focus

Proof of concept: Shoot electron at its own atom

Huismans et al., Science 331, 61 (2011)

Strong-field ionization of Xe(6s) using 7 μ m radiation

Strong-field ionization of Xe(6s) using 7 μ m radiation

Huismans et al., Science 331, 61 (2011)

FLASH in Hamburg

7/10) en 1

Explore the utility of velocity map imaging at the FEL (FLASH Campaign 2007)

P. Johnsson et al., J. Mod. Opt. 55, 2693 (2008)

Neon PAD spectra (June 2009)

Pump-probe experiment on CO₂ alignment (FLASH Campaign 2008, BL2)

Pump-probe experiment on CO₂ alignment (FLASH Campaign 2008, BL2)

Finding the two-color overlap

- Use bond-softening in H₂
- XUV-production of H₂⁺
- IR-dissociation into H⁺ + H
- Velocity and angle-resolved detection of H⁺

P. Johnsson et al., Opt. Lett. 35, 4163 (2010)

Pump-probe experiment on CO₂ alignment (FLASH Campaign 2008)

Raw data

Sorted data using timing electro-optical (TEO) system (<100fs)

P. Johnsson et al., J. Phys. B 42, 134017 (2009)

Br₂ photodissociation

- High vapor pressure
- Only moderately fast dynamics
- Easy to align
- (Rosca et al., J. Phys. B 34, 4919 (2001))
 ◆ Photodissociation at 400 nm
 ◆ Previous experiments with XUV probing (Leone et al., PRL 87, 193002 (2001), Wernet et al. PRL 103, 013001 (2009))

Evolution of kinetic energy spectra

400 nm dissocation

Importance of TEO sorting

Alignment and Planar Delocalization

N. Berrah et al., J. Mod. Optics 57, 1015 (2010)

Electron spectra recorded in 800-400-XUV pumppump-probe dissociative ionization of Br₂

X momentum (arb. u.)

High-Harmonic Generation

Recombination Chamber

TME

Velocity Map Imaging Spectromer

XUV Spectrometer

+ CEP-stable Dragon laser (not shown)

Dynamic Molecular Alignment of CO₂

Photoelectron angular distributions from aligned CO₂ molecules

Photoelectron angular distributions from aligned CO₂ molecules

Alignment

Planar Delocalization

Difference photoelectron image (inverted)

Theory by Robert Lucchese, Texas A&M

Take-home message

Use of the wave character of electrons allows novel experimental approaches that imprint structure and dynamics on measurable observables such as velocity map images

Novel XUV/x-ray sources (HHG and FELs) allow to push atomic & molecular science beyond the present state-of-the-art

☆Temporal properties → Electron dynamics

Example:

Attosecond time-resolved pump-probe spectroscopy in H₂ Wavepacket interferometry experiments give access to attosecond electron dynamics

↔Wavelength properties → Nuclear dynamics

Example:

Molecular frame photo-emission gives access to (time-dependent) orbital and structural information – pump-probe spectroscopy at FLASH and using an HHG source